The effective implementation of whole-exome sequencing- and whole-genome sequencing-based diagnostics in the management of children affected with genetic diseases and the rapid decrease in the cost of next-generation sequencing (NGS) enables the expansion of this method to newborn genetic screening programs. Such NGS-based screening greatly increases the number of diseases that can be detected compared to conventional newborn screening, as the latter is aimed at early detection of a limited number of inborn diseases. Moreover, genetic testing provides new possibilities for family members of the proband, as many variants responsible for adult-onset conditions are inherited from the parents.
View Article and Find Full Text PDFNeonatal disorders, particularly those resulting from prematurity, pose a major challenge in health care and have a significant impact on infant mortality and long-term child health. The limitations of current therapeutic strategies emphasize the need for innovative treatments. New cell-free technologies utilizing extracellular vesicles (EVs) offer a compelling opportunity for neonatal therapy by harnessing the inherent regenerative capabilities of EVs.
View Article and Find Full Text PDFObjective: We describe the clinical and genetic characteristics of fetuses and infants diagnosed with tuberous sclerosis complex (TSC) in our centre, prenatally or neonatally, for a better understanding of the benefits of early screening.
Methods: In this retrospective study, we analysed the data on one fetus and nine infants with a definitive TSC diagnosis by genetic criteria (five patients carrying variants and 5 patients carrying variants). We explored the differences between phenotypes of patients carrying and pathogenic variants.
Background: Niemann-Pick disease type C (NP-C) is an inherited neurodegenerative disease (1 per 100 000 newborns) caused by NPC proteins impairment that leads to unesterified cholesterol accumulation in late endosomal/lysosomal compartments. To date the NP-C diagnostics is usually based on cholesterol detection in fibroblasts using an invasive and time-consuming Filipin staining and we need more arguments to widely introduce oxysterols as a biomarkers in NP-C.
Methods: Insofar as NP-C represents about 8% of all infant cholestases, in this prospective observational study we tried to re-assess the specificity plasma oxysterol and chitotriosidase as a biochemical screening markers of NP-C in children with cholestasis syndrome of unknown origin.
Background: Preterm newborns are at thrombohemorrhagic risk during the early neonatal period. Taking into account the lack of informative tools for the laboratory diagnosis of hemostasis disorders in newborns, our goal was to determine the baseline values of thrombodynamics and platelet functional activity in healthy term and moderately preterm newborns during the early neonatal period future potential clinical use of these tests.
Methods: Coagulation was assessed using an integral assay of thrombodynamics and standard coagulation assays, and platelet functional activity was estimated by flow cytometry.
J Biomed Mater Res B Appl Biomater
April 2019
The objective of this study was to evaluate physical, mechanical, and biological properties of the polydioxanone (PDO) monofilament meshes and polyglycolide (PGA) polyfilament meshes in comparison with Permacol implants. In rat experimental model, a 1.5 × 2.
View Article and Find Full Text PDFA serious problem during intensive care and nursing of premature infants is the invasiveness of many examination methods. Urine is an excellent source of potential biomarkers due to the safety of the collection procedure. The purpose of this study was to determine the features specific for the urine proteome of preterm newborns and their changes under respiratory pathologies of infectious and non-infectious origin.
View Article and Find Full Text PDF2-Oxoglutarate dehydrogenase (OGDH) is the first and rate-limiting component of the multienzyme OGDH complex (OGDHC) whose malfunction is associated with neurodegeneration. The essential role of this complex in the degradation of glucose and glutamate, which have specific significance in brain, raises questions about the existence of brain-specific OGDHC isoenzyme(s). We purified OGDHC from extracts of brain or heart mitochondria using the same procedure of poly(ethylene glycol) fractionation, followed by size-exclusion chromatography.
View Article and Find Full Text PDFStructural relationship within the family of the thiamine diphosphate-dependent 2-oxo acid dehydrogenases was analyzed by combining different methods of sequence alignment with crystallographic and enzymological studies of the family members. For the first time, the sequence similarity of the homodimeric 2-oxoglutarate dehydrogenase to heterotetrameric 2-oxo acid dehydrogenases is established. The presented alignment of the catalytic domains of the dehydrogenases of pyruvate, branched-chain 2-oxo acids and 2-oxoglutarate unravels the sequence markers of the substrate specificity and the essential residues of the family members without the 3D structures resolved.
View Article and Find Full Text PDF