Publications by authors named "Dmitry Borkin"

ASH1L histone methyltransferase plays a crucial role in the pathogenesis of different diseases, including acute leukemia. While ASH1L represents an attractive drug target, developing ASH1L inhibitors is challenging, as the catalytic SET domain adapts an inactive conformation with autoinhibitory loop blocking the access to the active site. Here, by applying fragment-based screening followed by medicinal chemistry and a structure-based design, we developed first-in-class small molecule inhibitors of the ASH1L SET domain.

View Article and Find Full Text PDF

The protein-protein interaction between menin and mixed-lineage leukemia 1 (MLL1) plays an important role in development of acute leukemia with translocations of the MLL1 gene and in solid tumors. Here, we report the development of a new generation of menin-MLL1 inhibitors identified by structure-based optimization of the thienopyrimidine class of compounds. This work resulted in compound 28 (MI-1481), which showed very potent inhibition of the menin-MLL1 interaction (IC = 3.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) represent an important class of emerging cancer therapeutics. Recent ADC development efforts highlighted the use of pyrrolobenzodiazepine (PBD) dimer payload for the treatment of several cancers. We identified the isoquinolidinobenzodiazepine (IQB) payload (D211), a new class of PBD dimer family of DNA damaging payloads.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) accounts for approximately 85% of malignant liver tumors and results in 600,000 deaths each year, emphasizing the need for new therapies. Upregulation of menin was reported in HCC patients and high levels of menin correlate with poor patient prognosis. The protein-protein interaction between menin and histone methyltransferase mixed lineage leukemia 1 (MLL1) plays an important role in the development of HCC, implying that pharmacologic inhibition of this interaction could lead to new therapeutic strategy for the HCC patients.

View Article and Find Full Text PDF

Targeting the tumor vasculature with antibody-drug conjugates (ADCs) is a promising anti-cancer strategy that in order to be realized must overcome several obstacles, including identification of suitable targets and optimal warheads. Here, we demonstrate that the cell-surface protein CD276/B7-H3 is broadly overexpressed by multiple tumor types on both cancer cells and tumor-infiltrating blood vessels, making it a potentially ideal dual-compartment therapeutic target. In preclinical studies CD276 ADCs armed with a conventional MMAE warhead destroyed CD276-positive cancer cells, but were ineffective against tumor vasculature.

View Article and Find Full Text PDF

Developmental transcription programs are epigenetically regulated by the competing actions of polycomb and trithorax (TrxG) protein complexes, which repress and activate genes, respectively. Ewing sarcoma is a developmental tumor that is associated with widespread de-regulation of developmental transcription programs, including HOX programs. Posterior HOXD genes are abnormally over-expressed by Ewing sarcoma and HOXD13, in particular, contributes to the tumorigenic phenotype.

View Article and Find Full Text PDF

Development of potent small molecule inhibitors of protein-protein interactions with optimized druglike properties represents a challenging task in lead optimization process. Here, we report synthesis and structure-based optimization of new thienopyrimidine class of compounds, which block the protein-protein interaction between menin and MLL fusion proteins that plays an important role in acute leukemias with MLL translocations. We performed simultaneous optimization of both activity and druglike properties through systematic exploration of substituents introduced to the indole ring of lead compound 1 (MI-136) to identify compounds suitable for in vivo studies in mice.

View Article and Find Full Text PDF

Multipolar interactions involving fluorine and the protein backbone have been frequently observed in protein-ligand complexes. Such fluorine-backbone interactions may substantially contribute to the high affinity of small molecule inhibitors. Here we found that introduction of trifluoromethyl groups into two different sites in the thienopyrimidine class of menin-MLL inhibitors considerably improved their inhibitory activity.

View Article and Find Full Text PDF

Resistance to androgen deprivation therapies and increased androgen receptor (AR) activity are major drivers of castration-resistant prostate cancer (CRPC). Although prior work has focused on targeting AR directly, co-activators of AR signaling, which may represent new therapeutic targets, are relatively underexplored. Here we demonstrate that the mixed-lineage leukemia protein (MLL) complex, a well-known driver of MLL fusion-positive leukemia, acts as a co-activator of AR signaling.

View Article and Find Full Text PDF

Chromosomal translocations affecting mixed lineage leukemia gene (MLL) result in acute leukemias resistant to therapy. The leukemogenic activity of MLL fusion proteins is dependent on their interaction with menin, providing basis for therapeutic intervention. Here we report the development of highly potent and orally bioavailable small-molecule inhibitors of the menin-MLL interaction, MI-463 and MI-503, and show their profound effects in MLL leukemia cells and substantial survival benefit in mouse models of MLL leukemia.

View Article and Find Full Text PDF

CDC25 phosphatases are key cell cycle regulators and represent very attractive but challenging targets for anticancer drug discovery. Here, we explored whether fragment-based screening represents a valid approach to identify inhibitors of CDC25B. This resulted in identification of 2-fluoro-4-hydroxybenzonitrile, which directly binds to the catalytic domain of CDC25B.

View Article and Find Full Text PDF

The design and application of an effective, new class of multifunctional small molecule inhibitors of amyloid self-assembly are described. Several compounds based on the diaryl hydrazone scaffold were designed. Forty-four substituted derivatives of this core structure were synthesized using a variety of benzaldehydes and phenylhydrazines and characterized.

View Article and Find Full Text PDF

5-Exo-dig cyclocondensation of alk-3-yn-1-ones with hydrazines, in the presence of montmorillonite K-10, provides an effective method with a high atom economy for the synthesis of diversely 1,3,5-trisubstituted pyrazoles. The microwave-accelerated reaction proceeds in the absence of solvent and leads to 5-benzyl substituted pyrazoles with good yields (72-91%). The regiochemistry of the process was confirmed by the X-ray crystallographic structure determination of 1-(2-fluorophenyl)-5-(4-methylbenzyl)-3-phenyl-1H-pyrazole.

View Article and Find Full Text PDF

A broad group of structurally diverse small organofluorine compounds were synthesized and evaluated as inhibitors of β-amyloid (Aβ) self-assembly. The main goal was to generate a diverse library of compounds with the same functional group and to observe general structural features that characterize inhibitors of Aβ oligomer and fibril formation, ultimately identifying structures for further focused inhibitor design. The common structural motifs in these compounds are CF(3) -C-OH and CF(3) -C-NH groups that were proposed to be binding units in our previous studies.

View Article and Find Full Text PDF

The first direct asymmetric synthetic preparation of trifluoro-1-(indol-3-yl)ethanols (TFIEs) is described by an enantioselective organocatalytic method from indoles and inexpensive trifluoroacetaldehyde methyl hemiacetal. The reaction is catalyzed by hydroquinine to produce TFIEs in an almost quantitative yield and with enantioselectivities up to 75% at room temperature. The enantioselectivity is strongly dependent on the concentration of substrates and catalyst due to the competitive noncatalyzed reaction.

View Article and Find Full Text PDF

A highly diastereoselective microwave-assisted three component synthesis of azabicyclo[2.2.2]octan-5-ones by a silicotungstic acid-catalyzed aza-Diels-Alder cyclization is described.

View Article and Find Full Text PDF

By using computer modeling and lead structures from our earlier SAR results, a broad variety of pyrrole-, indole-, and pyrazole-based compounds were evaluated as potential fructose 1,6-bisphosphatase (FBPase) inhibitors. The docking studies yielded promising structures, and several were selected for synthesis and FBPase inhibition assays: 1-[4-(trifluoromethyl)benzoyl]-1H-indole-5-carboxamide, 1-(alpha-naphthalen-1-ylsulfonyl)-7-nitro-1H-indole, 5-(4-carboxyphenyl)-3-phenyl-1-[3-(trifluoromethyl)phenyl]-1H-pyrazole, 1-(4-carboxyphenylsulfonyl)-1H-pyrrole, and 1-(4-carbomethoxyphenylsulfonyl)-1H-pyrrole were synthesized and tested for inhibition of FBPase. The IC(50) values were determined to be 0.

View Article and Find Full Text PDF

A novel method for the preparation of trifluoroacetaldehyde (fluoral, TFAc, CF(3)CHO) from commercially available trifluoroacetaldehyde ethylhemiacetal (TFAE) by microwave irradiation is described. The isolation, characterization and reaction of fluoral with various nucleophiles were studied to verify the diverse applicability of this new method.

View Article and Find Full Text PDF