Publications by authors named "Dmitry A Shagin"

The clinical isolate of Klebsiella pneumoniae 1333/P225 was revealed as containing a KL108 K. pneumoniae K locus for capsule biosynthesis. The gene cluster demonstrated a high level of sequence and arrangement similarity with that of the E.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding the diversity of capsular polysaccharides (CPS) is essential for effectively using phage therapy against panresistant Acinetobacter baumannii infections.
  • The clinical isolate A. baumannii 36-1454, which has a novel K locus (KL127), shows differences in CPS structure compared to another strain (KL128), specifically in the glycosyltransferase genes and linkages of sugar units in their CPS chains.
  • The study highlights the relevance of Wzy proteins in forming CPS linkages and discusses how these findings can inform future phage therapy strategies for treating infections that are resistant to current antibiotics.
View Article and Find Full Text PDF

The structure of the K128 capsular polysaccharide (CPS) produced by Acinetobacter baumannii isolate KZ-1093 from Kazakhstan was established by sugar analysis and Smith degradation along with 1D and 2D H and C NMR spectroscopy. The CPS was found to consist of branched pentasaccharide repeating units containing only neutral sugars, and its composition and topology are closely related to those of the A. baumannii K116 CPS.

View Article and Find Full Text PDF

The genome of Acinetobacter baumannii clinical isolate, MAR-303, recovered in Russia was sequenced and found to contain a novel gene cluster at the A. baumannii K locus for capsule biosynthesis. The gene cluster, designated KL116, included four genes for glycosyltransferases (Gtrs) and a gene for a Wzy polymerase responsible for joining oligosaccharide K units into the capsular polysaccharide (CPS).

View Article and Find Full Text PDF

A capsular polysaccharide (CPS) was isolated from strain MAR13-1452 of an emerging pathogen Acinetobacter baumannii and assigned type K125. The following structure of the CPS was established by sugar analysis, Smith degradation, and 1D and 2D H and C NMR spectroscopy: Proteins encoded by the KL125 gene cluster in the genome of MAR13-1452, including three glycosyltransferases, were assigned roles in the biosynthesis of the K125 CPS.

View Article and Find Full Text PDF

Prolyl carboxypeptidase (PRCP) is a lysosomal proline specific serine peptidase that also plays a vital role in the regulation of physiological processes in mammals. In this report, we isolate and characterize the first PRCP in an insect. PRCP was purified from the anterior midgut of larvae of a stored product pest, Tenebrio molitor, using a three-step chromatography strategy, and it was determined that the purified enzyme was a dimer.

View Article and Find Full Text PDF

A well-recognized obstacle to efficient high-throughput analysis of cDNA libraries is the differential abundance of various transcripts in any particular cell type. Decreasing the prevalence of clones representing abundant transcripts before sequencing, using cDNA normalization, may significantly increase the efficacy of random sequencing and is essential for rare gene discovery. Duplex-specific nuclease (DSN) normalization allows the generation of normalized full-length-enriched cDNA libraries to permit a high gene discovery rate.

View Article and Find Full Text PDF

The characterization of rare messages in cDNA libraries is complicated by the substantial variations that exist in the abundance levels of different transcripts in cells and tissues. The equalization (normalization) of cDNA is a helpful approach for decreasing the prevalence of abundant transcripts, thereby facilitating the assessment of rare transcripts. This unit provides a method for duplex-specific nuclease (DSN)-based normalization, which allows for the fast and reliable equalization of cDNA, thereby facilitating the generation of normalized, full-length-enriched cDNA libraries, and enabling efficient RNA analyses.

View Article and Find Full Text PDF

A number of genetic systems for human genetic identification based on short tandem repeats or single nucleotide polymorphisms are widely used for crime detection, kinship studies and in analysis of victims of mass disasters. Here, we have developed a new set of 32 molecular genetic markers for human genetic identification based on polymorphic retroelement insertions. Allele frequencies were determined in a group of 90 unrelated individuals from four genetically distant populations of the Russian Federation.

View Article and Find Full Text PDF

A novel DSN-depletion method allows elimination of selected sequences from full-length-enriched cDNA libraries. Depleted cDNA can be applied for subsequent EST sequencing, expression cloning, and functional screening approaches. The method employs specific features of the kamchatka crab duplex-specific nuclease (DSN).

View Article and Find Full Text PDF

Kamchatka crab duplex-specific nuclease (Par_DSN) has been classified as a member of the family of DNA/RNA non-specific beta-beta-alpha metal finger (bba-Me-finger) nucleases, the archetype of which is the nuclease from Serratia marcescens. Although the enzyme under investigation seems to belong to the family of S. marcescens nucleases, Par_DSN exhibits a marked preference for double-stranded DNA as a substrate and this property is unusual for other members of this family.

View Article and Find Full Text PDF

Background: Nucleases, which are key components of biologically diverse processes such as DNA replication, repair and recombination, antiviral defense, apoptosis and digestion, have revolutionized the field of molecular biology. Indeed many standard molecular strategies, including molecular cloning, studies of DNA-protein interactions, and analysis of nucleic acid structures, would be virtually impossible without these versatile enzymes. The discovery of nucleases with unique properties has often served as the basis for the development of modern molecular biology methods.

View Article and Find Full Text PDF

Analysis of rare messages in cDNA libraries is extremely difficult due to the substantial variations in the abundance of different transcripts in cells and tissues. Therefore, for rare transcript searches and analyses, the generation of equalized (normalized) cDNA is essential. Several cDNA normalization methods have been developed since 1990.

View Article and Find Full Text PDF

We developed a novel simple cDNA normalization method [termed duplex-specific nuclease (DSN) normalization] that may be effectively used for samples enriched with full-length cDNA sequences. DSN normalization involves the denaturation-reassociation of cDNA, degradation of the double-stranded (ds) fraction formed by abundant transcripts and PCR amplification of the equalized single-stranded (ss) DNA fraction. The key element of this method is the degradation of the ds fraction formed during reassociation of cDNA using the kamchatka crab DSN, as described recently.

View Article and Find Full Text PDF

Homologs of the green fluorescent protein (GFP), including the recently described GFP-like domains of certain extracellular matrix proteins in Bilaterian organisms, are remarkably similar at the protein structure level, yet they often perform totally unrelated functions, thereby warranting recognition as a superfamily. Here we describe diverse GFP-like proteins from previously undersampled and completely new sources, including hydromedusae and planktonic Copepoda. In hydromedusae, yellow and nonfluorescent purple proteins were found in addition to greens.

View Article and Find Full Text PDF

Neurons can communicate with each other either via exchange of specific molecules at synapses or by direct electrical connections between the cytoplasm of either cell [for review see Bruzzone et al. (1996) Eur. J.

View Article and Find Full Text PDF

We have characterized a novel nuclease from the Kamchatka crab, designated duplex-specific nuclease (DSN). DSN displays a strong preference for cleaving double-stranded DNA and DNA in DNA-RNA hybrid duplexes, compared to single-stranded DNA. Moreover, the cleavage rate of short, perfectly matched DNA duplexes by this enzyme is essentially higher than that for nonperfectly matched duplexes of the same length.

View Article and Find Full Text PDF

A novel family of C-type lectin-like genes, denoted multidomain free lectin (MDFL), was identified in the freshwater planaria Girardia (Dugesia) tigrina. We cloned several genes that encode proteins comprising a signal peptide and a number of consecutive C-type lectin-like domains (CTLDs) interconnected by short linker stretches. Analyses of genomic organization, CTLD amino acid sequences, and the overall architecture of these proteins indicate that planarian proteins are a separate family of C-type lectin-like proteins.

View Article and Find Full Text PDF