We characterize the assembly of terphenyldithiol (TPDT) on gallium arsenide (GaAs) from ethanol (EtOH) and tetrahydrofuran (THF) as a function of ammonium hydroxide (NH4OH) concentration. NH4OH facilitates the conversion of thioacetyl end groups of the TPDT precursor to thiolates in the assembly solution. The final structure of TPDT assembled on GaAs is sensitive not only to the assembly solvent but also to NH4OH concentration.
View Article and Find Full Text PDFWe demonstrate the use of high-sensitivity, off-normal transmission IR spectroscopy with s-polarized light to probe the chemical identity and orientation of quaterphenyldithiol (QPDT) molecular assemblies on GaAs as a function of ammonium hydroxide (NH4OH) concentration. NH4OH is added to the assembly solution to convert the thioacetyl groups on the QPDT precursor to thiolates. When assembled at high NH4OH concentrations, the acetyl groups are completely removed, and QPDT is disordered on GaAs.
View Article and Find Full Text PDFThe assembly of terphenyldithiol (TPDT) and quaterphenyldithiol (QPDT) on gold and gallium arsenide from ethanol (EtOH), tetrahydrofuran (THF), and solutions consisting of both solvents has been characterized by near-edge X-ray absorption fine structure spectroscopy. The surface coverage and the average orientation of both TPDT and QPDT on gold are solvent-independent. These molecules readily form monolayers on gold with an ensemble-average backbone tilt of 30 degrees +/- 3 degrees from the substrate normal.
View Article and Find Full Text PDF