Publications by authors named "Dmitry A Gordenin"

Human APOBEC single-strand (ss) specific DNA and RNA cytidine deaminases change cytosines to uracils (U's) and function in antiviral innate immunity and RNA editing and can cause hypermutation in chromosomes. The resulting U's can be directly replicated, resulting in C to T mutations, or U-DNA glycosylase can convert the U's to abasic (AP) sites which are then fixed as C to T or C to G mutations by translesion DNA polymerases. We noticed that in yeast and in human cancers, contributions of C to T and C to G mutations depend on the origin of ssDNA mutagenized by APOBECs.

View Article and Find Full Text PDF

Human APOBEC single-strand (ss) specific DNA and RNA cytidine deaminases change cytosines to uracils and function in antiviral innate immunity, RNA editing, and can cause hypermutation in chromosomes. The resulting uracils can be directly replicated, resulting in C to T mutations, or uracil-DNA glycosylase can convert the uracils to abasic (AP) sites which are then fixed as C to T or C to G mutations by translesion DNA polymerases. We noticed that in yeast and in human cancers, contributions of C to T and C to G mutations depends on the origin of ssDNA mutagenized by APOBECs.

View Article and Find Full Text PDF

APOBEC enzymes are part of the innate immunity and are responsible for restricting viruses and retroelements by deaminating cytosine residues. Most solid tumors harbor different levels of somatic mutations attributed to the off-target activities of APOBEC3A (A3A) and/or APOBEC3B (A3B). However, how APOBEC3A/B enzymes shape the tumor evolution in the presence of exogenous mutagenic processes is largely unknown.

View Article and Find Full Text PDF

Mutagens often prefer specific nucleotides or oligonucleotide motifs that can be revealed by studying the hypermutation spectra in single-stranded (ss) DNA. We utilized a yeast model to explore mutagenesis by glycidamide, a simple epoxide formed endogenously in humans from the environmental toxicant acrylamide. Glycidamide caused ssDNA hypermutation in yeast predominantly in cytosines and adenines.

View Article and Find Full Text PDF

Mutational signatures discerned in cancer genomes, in aging tissues and in cells exposed to toxic agents, reflect complex processes underlying transformation of cells from normal to dysfunctional. Due to its ubiquitous and chronic nature, redox stress contributions to cellular makeover remain equivocal. The deciphering of a new mutational signature of an environmentally-relevant oxidizing agent, potassium bromate, in yeast single strand DNA uncovered a surprising heterogeneity in the mutational signatures of oxidizing agents.

View Article and Find Full Text PDF
Article Synopsis
  • - A study involving high-coverage whole-genome sequencing of 232 lung cancer cases in never smokers (LCINS) identified three distinct subtypes based on genetic alterations, primarily involving copy number changes.
  • - The dominant subtype, termed "piano," is characterized by unique genetic features like UBA1 mutations and low mutational burden, indicating stem cell-like traits and a slower tumor growth rate compared to typical lung cancer in smokers.
  • - Notably, no significant tobacco-related mutations were found, even in patients exposed to secondhand smoke, and certain genetic changes were linked to increased mortality, suggesting potential for tailored treatment strategies for LCINS.
View Article and Find Full Text PDF

The current SARS-CoV-2 pandemic underscores the importance of understanding the evolution of RNA genomes. While RNA is subject to the formation of similar lesions as DNA, the evolutionary and physiological impacts RNA lesions have on viral genomes are yet to be characterized. Lesions that may drive the evolution of RNA genomes can induce breaks that are repaired by recombination or can cause base substitution mutagenesis, also known as base editing.

View Article and Find Full Text PDF

Epidemiologic studies often rely on questionnaire data, exposure measurement tools, and/or biomarkers to identify risk factors and the underlying carcinogenic processes. An emerging and promising complementary approach to investigate cancer etiology is the study of somatic "mutational signatures" that endogenous and exogenous processes imprint on the cellular genome. These signatures can be identified from a complex web of somatic mutations thanks to advances in DNA sequencing technology and analytical algorithms.

View Article and Find Full Text PDF

Human skin is continuously exposed to environmental DNA damage leading to the accumulation of somatic mutations over the lifetime of an individual. Mutagenesis in human skin cells can be also caused by endogenous DNA damage and by DNA replication errors. The contributions of these processes to the somatic mutation load in the skin of healthy humans has so far not been accurately assessed because the low numbers of mutations from current sequencing methodologies preclude the distinction between sequencing errors and true somatic genome changes.

View Article and Find Full Text PDF
Article Synopsis
  • * Analyzing 3,000 tumor-normal pairs from 42 human cancer types revealed that changes in somatic mutation load are closely linked to the boundaries of topologically-associating domains.
  • * Different mutational processes affect where mutations occur in the genome, with some processes targeting active genomic regions while others affect inactive ones, highlighting the importance of genome organization in cancer mutation rates.
View Article and Find Full Text PDF

Genomes of tens of thousands of SARS-CoV2 isolates have been sequenced across the world and the total number of changes (predominantly single base substitutions) in these isolates exceeds ten thousand. We compared the mutational spectrum in the new SARS-CoV-2 mutation dataset with the previously published mutation spectrum in hypermutated genomes of rubella-another positive single stranded (ss) RNA virus. Each of the rubella virus isolates arose by accumulation of hundreds of mutations during propagation in a single subject, while SARS-CoV-2 mutation spectrum represents a collection events in multiple virus isolates from individuals across the world.

View Article and Find Full Text PDF

Genomes of tens of thousands of SARS-CoV2 isolates have been sequenced across the world and the total number of changes (predominantly single base substitutions) in these isolates exceeds ten thousand. We compared the mutational spectrum in the new SARS-CoV-2 mutation dataset with the previously published mutation spectrum in hypermutated genomes of rubella - another positive single stranded (ss) RNA virus. Each of the rubella isolates arose by accumulation of hundreds of mutations during propagation in a single subject, while SARS-CoV-2 mutation spectrum represents a collection events in multiple virus isolates from individuals across the world.

View Article and Find Full Text PDF

Chromothripsis and kataegis are frequently observed in cancer and may arise from telomere crisis, a period of genome instability during tumorigenesis when depletion of the telomere reserve generates unstable dicentric chromosomes. Here we examine the mechanism underlying chromothripsis and kataegis by using an in vitro telomere crisis model. We show that the cytoplasmic exonuclease TREX1, which promotes the resolution of dicentric chromosomes, plays a prominent role in chromothriptic fragmentation.

View Article and Find Full Text PDF

Regions of genomic DNA can become single-stranded in the course of normal replication and transcription as well as during DNA repair. Abnormal repair and replication intermediates can contain large stretches of persistent single-stranded DNA, which is extremely vulnerable to DNA damaging agents and hypermutation. Since such single-stranded DNA spans only a fraction of the genome at a given instance, hypermutation in these regions leads to tightly-spaced mutation clusters.

View Article and Find Full Text PDF

Yeast strains with low levels of the replicative DNA polymerases (alpha, delta, and epsilon) have high levels of chromosome deletions, duplications, and translocations. By examining the patterns of mutations induced in strains with low levels of DNA polymerase by the human protein APOBEC3B (a protein that deaminates cytosine in single-stranded DNA), we show dramatically elevated amounts of single-stranded DNA relative to a wild-type strain. During DNA replication, one strand (defined as the leading strand) is replicated processively by DNA polymerase epsilon and the other (the lagging strand) is replicated as short fragments initiated by DNA polymerase alpha and extended by DNA polymerase delta.

View Article and Find Full Text PDF

Alkylation is one of the most ubiquitous forms of DNA lesions. However, the motif preferences and substrates for the activity of the major types of alkylating agents defined by their nucleophilic substitution reactions (SN1 and SN2) are still unclear. Utilizing yeast strains engineered for large-scale production of single-stranded DNA (ssDNA), we probed the substrate specificity, mutation spectra and signatures associated with DNA alkylating agents.

View Article and Find Full Text PDF

Somatic mutations in cancer genomes are caused by multiple mutational processes, each of which generates a characteristic mutational signature. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we characterized mutational signatures using 84,729,690 somatic mutations from 4,645 whole-genome and 19,184 exome sequences that encompass most types of cancer. We identified 49 single-base-substitution, 11 doublet-base-substitution, 4 clustered-base-substitution and 17 small insertion-and-deletion signatures.

View Article and Find Full Text PDF

Rubella viruses (RV) have been found in an association with granulomas in children with primary immune deficiencies (PID). Here, we report the recovery and characterization of infectious immunodeficiency-related vaccine-derived rubella viruses (iVDRV) from diagnostic skin biopsies of four patients. Sequence evolution within PID hosts was studied by comparison of the complete genomic sequences of the iVDRVs with the genome of the vaccine virus RA27/3.

View Article and Find Full Text PDF

A single cancer genome can harbor thousands of clustered mutations. Mutation signature analyses have revealed that the origin of clusters are lesions in long tracts of single-stranded (ss) DNA damaged by apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) cytidine deaminases, raising questions about molecular mechanisms that generate long ssDNA vulnerable to hypermutation. Here, we show that ssDNA intermediates formed during the repair of gamma-induced bursts of double-strand breaks (DSBs) in the presence of APOBEC3A in yeast lead to multiple APOBEC-induced clusters similar to cancer.

View Article and Find Full Text PDF

Redox stress is a major hallmark of cancer. Analysis of thousands of sequenced cancer exomes and whole genomes revealed distinct mutational signatures that can be attributed to specific sources of DNA lesions. Clustered mutations discovered in several cancer genomes were linked to single-strand DNA (ssDNA) intermediates in various processes of DNA metabolism.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding genome plasticity benefits from assays that analyze recombination, repair, and mutagenesis, especially in microbial systems with easily manipulated genetic reporters.
  • These cellular assays include various types of reporters—genetic, molecular, and cytological—that help researchers study DNA processes.
  • The text reviews commonly used assays, highlighting their strengths and weaknesses, and offers guidelines for future research.
View Article and Find Full Text PDF

This commentary is a tribute to the late colleague, Prof. Michael D. Ter-Avanesyan - prominent contributor into knowledge about prion maintenance and function.

View Article and Find Full Text PDF