Publications by authors named "Dmitry A Davydov"

Complexation of phospholipid lipsomes with a cationic polymer, poly(N-ethyl-4-vinylpyridinium bromide) (PEVP), and subsequent interliposomal migration of the adsorbed macromolecules, have been investigated. Liposomes of two different charge types were examined: (a) a liposomal system, with an overall charge near zero, consisting of zwitterionic phosphatidylcholine (egg lecithin, EL) with added doubly anionic phospholipid, cardiolipin (CL(2-)), and cationic dihexadecyldimethylammonium bromide (HMAB(+)), in a CL(2-)/HMAB(+) charge-to-charge ratio of 1:1; (b) an anionic liposomal system composed of an EL/CL(2-) mixture plus polyoxyethylene monocetyl ether (Brij 58). Both three-component systems were designed specifically to preclude liposomal aggregation upon electrostatic association with the PEVP, a phenomenon that had complicated analysis of data from several two-component liposomes.

View Article and Find Full Text PDF

Anionic liposomes containing a 4:1 molar ratio of neutral to anionic phospholipids were treated with an excess of five zwitterionic polymers differing only in the spacer length separating their cationic and anionic moieties. Although the polymers do not disrupt the structural integrity of the liposomes, they can induce spacer-dependent molecular rearrangements within the liposomes. Thus, the following were observed: spacer length = 1, no binding to the liposomes; spacer length = 2, adsorption to the liposomes, but no molecular rearrangement; spacer length = 3, lateral lipid segregation but little or no flip-flop; spacer length = 4 or 5, lateral lipid segregation and flip-flop.

View Article and Find Full Text PDF