High-harmonic generation (HHG) is a unique tabletop light source with femtosecond-to-attosecond pulse duration and tailorable polarization and beam shape. Here, we use counter-rotating femtosecond laser pulses of 0.8 µm and 2.
View Article and Find Full Text PDFHeusler compounds are exciting materials for future spintronics applications because they display a wide range of tunable electronic and magnetic interactions. Here, we use a femtosecond laser to directly transfer spin polarization from one element to another in a half-metallic Heusler material, CoMnGe. This spin transfer initiates as soon as light is incident on the material, demonstrating spatial transfer of angular momentum between neighboring atomic sites on time scales < 10 fs.
View Article and Find Full Text PDFBy correlating time- and angle-resolved photoemission and time-resolved transverse magneto-optical Kerr effect measurements, both at extreme ultraviolet wavelengths, we uncover the universal nature of the ultrafast photoinduced magnetic phase transition in Ni. This allows us to explain the ultrafast magnetic response of Ni at all laser fluences-from a small reduction of the magnetization at low laser fluences, to complete quenching at high laser fluences. Both probe methods exhibit the same demagnetization and recovery timescales.
View Article and Find Full Text PDFIt has long been known that ferromagnets undergo a phase transition from ferromagnetic to paramagnetic at the Curie temperature, associated with critical phenomena such as a divergence in the heat capacity. A ferromagnet can also be transiently demagnetized by heating it with an ultrafast laser pulse. However, to date, the connection between out-of-equilibrium and equilibrium phase transitions, or how fast the out-of-equilibrium phase transitions can proceed, was not known.
View Article and Find Full Text PDFOptical interactions are governed by both spin and angular momentum conservation laws, which serve as a tool for controlling light-matter interactions or elucidating electron dynamics and structure of complex systems. Here, we uncover a form of simultaneous spin and orbital angular momentum conservation and show, theoretically and experimentally, that this phenomenon allows for unprecedented control over the divergence and polarization of extreme-ultraviolet vortex beams. High harmonics with spin and orbital angular momenta are produced, opening a novel regime of angular momentum conservation that allows for manipulation of the polarization of attosecond pulses-from linear to circular-and for the generation of circularly polarized vortices with tailored orbital angular momentum, including harmonic vortices with the same topological charge as the driving laser beam.
View Article and Find Full Text PDFHigh harmonics driven by two-color counterrotating circularly polarized laser fields are a unique source of bright, circularly polarized, extreme ultraviolet, and soft x-ray beams, where the individual harmonics themselves are completely circularly polarized. Here, we demonstrate the ability to preferentially select either the right or left circularly polarized harmonics simply by adjusting the relative intensity ratio of the bichromatic circularly polarized driving laser field. In the frequency domain, this significantly enhances the harmonic orders that rotate in the same direction as the higher-intensity driving laser.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2017
Electron-electron interactions are the fastest processes in materials, occurring on femtosecond to attosecond timescales, depending on the electronic band structure of the material and the excitation energy. Such interactions can play a dominant role in light-induced processes such as nano-enhanced plasmonics and catalysis, light harvesting, or phase transitions. However, to date it has not been possible to experimentally distinguish fundamental electron interactions such as scattering and screening.
View Article and Find Full Text PDFWe investigate the macroscopic physics of noncollinear high harmonic generation (HHG) at high pressures. We make the first experimental demonstration of phase matching of noncollinear high-order-difference-frequency generation at ionization fractions above the critical ionization level, which normally sets an upper limit on the achievable cutoff photon energies. Additionally, we show that noncollinear high-order-sum-frequency generation requires much higher pressures for phase matching than single-beam HHG does, which mitigates the short interaction region in this geometry.
View Article and Find Full Text PDFAtoms undergoing strong-field ionization in two-color circularly polarized femtosecond laser fields exhibit unique two-dimensional photoelectron trajectories and can emit bright circularly polarized extreme ultraviolet and soft-x-ray beams. In this Letter, we present the first experimental observation of nonsequential double ionization in these tailored laser fields. Moreover, we can enhance or suppress nonsequential double ionization by changing the intensity ratio and helicity of the two driving laser fields to maximize or minimize high-energy electron-ion rescattering.
View Article and Find Full Text PDFWe demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.
View Article and Find Full Text PDFTransformation of Bessel beams by biaxial and uniaxial crystals is investigated experimentally and theoretically. Experimental observations show beam symmetry changing and formation of complex intensity patterns, depending on the orientation of the crystal. These patterns can appear as a regular system of peak intensities.
View Article and Find Full Text PDF