This paper presents a cryovacuum setup for the study of substances under near-space conditions. The setup makes it possible to study the infrared spectra, refractive index, and density of substances that are condensed from the vapor phase onto a cooled substrate in the temperature range from 11 to 300 K. At the same time, it is possible to obtain the ultimate pressure of 1 × 10 Torr in the vacuum chamber.
View Article and Find Full Text PDFThis paper presents the results obtained in the study of structural phase transitions in thin films of R134A. The samples were condensed on a substrate by physical deposition of R134A molecules from the gas phase. Structural phase transformations in samples were investigated by observing the changes in characteristic frequencies of Freon molecules in the mid-infrared range with the help of Fourier-transform infrared spectroscopy.
View Article and Find Full Text PDFMethanol plays an important role in studying the structure and dynamics of hydrogen bonds in alcohols and other physiologically important compounds in the condensed state. The physical vapor deposition method and two-beam interferometry make it possible to study the structure of polyatomic molecules, the nature and character of intermolecular interactions, and the internal structure of various compounds. Thus, it becomes possible to analyze changes in the internal structure of substances near the points of their phase transitions and glass transitions at ultralow temperatures.
View Article and Find Full Text PDFWe present low-temperature measurements of the refractive index of cryofilms of tetrachloromethane and 1,1,1,2-tetrafluoroethane at different condensation and measurement temperatures between 16 and 130 K. Using cryovacuum condensation, we have been able to obtain thin films in an amorphous state for both substances despite them being very bad glass formers. Then, we have studied the evolution of the refractive index with an increasing temperature, including by transitions to ordered or partially disordered crystalline states.
View Article and Find Full Text PDF