Publications by authors named "Dmitriy Panasenko"

We present an experimental technique capable of single-shot recording of an ultrashort laser pulse sonogram by use of two-photon absorption in a conventional silicon CCD camera. The quadratic spectral phase, introduced into a 100-fs pulse by a grating stretcher, was measured and found to be in good agreement with the analytically calculated value. The nonlinear response of silicon allows sonogram characterization in a wavelength range from 1 to 2 mum .

View Article and Find Full Text PDF

We report on a passively mode-locked all-fiber laser oscillator at 1.5 microm based on heavily doped phosphate-glass active fiber. An active fiber only 20 cm long is sufficient to produce as much as 2.

View Article and Find Full Text PDF

We demonstrate a novel method for spectral analysis of microwave signals that employs time-domain processing in fiber. We use anomalous dispersion in single-mode fiber to perform a Fresnel transform followed by a matched amount of dispersion-compensating fiber to perform an inverse Fresnel transform of an ultrashort pulse. After the Fresnel-transformed waveform is modulated by the microwave signal, the waveform at the output of the dispersion-compensating fiber represents the ultrashort pulse convolved with the microwave spectrum.

View Article and Find Full Text PDF

An experimental technique for single-shot generation of the sonogram of an ultrashort laser pulse is demonstrated. The method is based on the time gating of a spectrally decomposed test signal, transferring its spectral phase into a spatial phase, and the spatial filtering of the signal to produce a sonogram. The technique is evaluated experimentally, producing sonograms for linearly and nonlinearly chirped femtosecond laser pulses.

View Article and Find Full Text PDF

We present an experimental setup capable of performing a single-shot interferometric correlation of femtosecond pulses using two-photon conductivity in a standard silicon CCD camera. The method is demonstrated with 100-fs pulses at 1.4 microm.

View Article and Find Full Text PDF