Using palladium-catalyzed Suzuki polycondensation, we synthesized new light-emitting fluorene copolymers containing the dicyano derivatives of stilbene and phenanthrene and characterized them by gel permeation chromatography, UV-vis absorption spectroscopy, spectrofluorimetry, and cyclic voltammetry. The photoluminescence spectra of the synthesized polymers show significant energy transfer from the fluorene segments to the dicyanostilbene and 9,10-dicyanophenanthrene units, which is in agreement with the data of theoretical calculations. OLEDs based on these polymers were fabricated with an ITO/PEDOT-PSS (35 nm)/p-TPD (30 nm)/PVK (5 nm)/light emitting layer (70-75 nm)/PF-PO (20 nm)/LiF (1 nm)/Al (80 nm) configuration.
View Article and Find Full Text PDFQuantum dots (QDs) are promising candidates for producing bright, color-pure, cost-efficient, and long-lasting QD-based light-emitting diodes (QDLEDs). However, one of the significant problems in achieving high efficiency of QDLEDs is the imbalance between the rates of charge-carrier injection into the emissive QD layer and their transport through the device components. Here we investigated the effect of the parameters of the deposition of a poly (methyl methacrylate) (PMMA) electron-blocking layer (EBL), such as PMMA solution concentration, on the characteristics of EBL-enhanced QDLEDs.
View Article and Find Full Text PDF