Publications by authors named "Dmitriy Krepkiy"

The TRPV1 channel is a detector of noxious stimuli, including heat, acidosis, vanilloid compounds and lipids. The gating mechanisms of the related TRPV2 channel are poorly understood because selective high affinity ligands are not available, and the threshold for heat activation is extremely high (>50°C). Cryo-EM structures of TRPV1 and TRPV2 reveal that they adopt similar structures, and identify a putative vanilloid binding pocket near the internal side of TRPV1.

View Article and Find Full Text PDF

Venom toxins are invaluable tools for exploring the structure and mechanisms of ion channels. Here, we solve the structure of double-knot toxin (DkTx), a tarantula toxin that activates the heat-activated TRPV1 channel. We also provide improved structures of TRPV1 with and without the toxin bound, and investigate the interactions of DkTx with the channel and membranes.

View Article and Find Full Text PDF

Tarantula toxins that bind to voltage-sensing domains of voltage-activated ion channels are thought to partition into the membrane and bind to the channel within the bilayer. While no structures of a voltage-sensor toxin bound to a channel have been solved, a structural homolog, psalmotoxin (PcTx1), was recently crystalized in complex with the extracellular domain of an acid sensing ion channel (ASIC). In the present study we use spectroscopic, biophysical and computational approaches to compare membrane interaction properties and channel binding surfaces of PcTx1 with the voltage-sensor toxin guangxitoxin (GxTx-1E).

View Article and Find Full Text PDF

Protein toxins from tarantula venom alter the activity of diverse ion channel proteins, including voltage, stretch, and ligand-activated cation channels. Although tarantula toxins have been shown to partition into membranes, and the membrane is thought to play an important role in their activity, the structural interactions between these toxins and lipid membranes are poorly understood. Here, we use solid-state NMR and neutron diffraction to investigate the interactions between a voltage sensor toxin (VSTx1) and lipid membranes, with the goal of localizing the toxin in the membrane and determining its influence on membrane structure.

View Article and Find Full Text PDF

Membrane proteins serve crucial signaling and transport functions, yet relatively little is known about their structures in membrane environments or how lipids interact with these proteins. For voltage-activated ion channels, X-ray structures suggest that the mobile voltage-sensing S4 helix would be exposed to the membrane, and functional studies reveal that lipid modification can profoundly alter channel activity. Here, we use solid-state NMR to investigate structural interactions of lipids and water with S1-S4 voltage-sensing domains and to explore whether lipids influence the structure of the protein.

View Article and Find Full Text PDF

Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly charged S1-S4 voltage-sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated ion channels. Here we use neutron diffraction, solid-state nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1-S4 voltage-sensing domains.

View Article and Find Full Text PDF

We demonstrate feasibility of biophysical characterization of the peripheral cannabinoid receptor CB2 produced by heterologous expression in E. coli membranes. Recombinant receptor was purified by affinity chromatography, and NMR diffusion experiments performed on CB2 solubilized in dodecylphosphocholine (DPC) micelles.

View Article and Find Full Text PDF

A biotin-protein ligase recognition site (BRS) was inserted into a polypeptide comprised of the maltose-binding protein, the peripheral cannabinoid receptor (CB2), thioredoxin A, and a polyhistidine tag at the carboxy terminus. Expression levels of the recombinant receptor in Escherichia coli BL21(DE3) cells were approximately 1mg per liter of bacterial culture. The biotinylated CB2-fusion fully retained its ligand-binding capacity.

View Article and Find Full Text PDF

Alignment of more than 20 deduced sequences for mevalonate diphosphate decarboxylase (MDD) indicates that serines 34, 36, 120,121, 153, and 155 are invariant residues that map within a proposed interdomain active site cleft. To test possible active site roles for these invariant serines, each has been mutated to alanine. S34A exhibits limited solubility and impaired binding of the fluorescent ATP analogue, trinitrophenyl-ATP (TNP-ATP), suggesting that Ser-34 substitution destabilizes proper enzyme folding.

View Article and Find Full Text PDF

Finger 3 of transcription factor IIIA of Xenopus laevis was synthesized and constituted with Zn(2+) or Cd(2+). The C-block element of the internal control region of the promoter of the 5S rRNA gene binds to the Zn-F3 and Cd-F3 with dissociation constants of 2.6 x 10(-5) and 1.

View Article and Find Full Text PDF

A combination of sequence homology analyses of mevalonate diphosphate decarboxylase (MDD) proteins and structural information for MDD leads to the hypothesis that Asp 302 and Lys 18 are active site residues in MDD. These residues were mutated to replace acidic/basic side chains and the mutant proteins were isolated and characterized. Binding and competitive displacement studies using trinitrophenyl-ATP, a fluorescent analog of substrate ATP, indicate that these mutant enzymes (D302A, D302N, K18M) retain the ability to stoichiometrically bind nucleotide triphosphates at the active site.

View Article and Find Full Text PDF

Properties of the metal ion binding sites of Zn-transcription factor IIIA (TFIIIA) were investigated to understand the potential of this type of zinc finger to undergo reactions that remove Zn(2+) from the protein. Zn-TFIIIA was purified from E. coli containing the cloned sequence for Xenopus laevis oocyte TFIIIA and its stoichiometry of bound Zn(2+) was shown to depend on the details of the isolation process.

View Article and Find Full Text PDF

We show the first ENDOR study of the coordination environment of high-spin Co(II) in a biological system with a study of DNA binding to the Co-substituted Cys2/His2 single Zn-finger domain, Finger 3 (F3), from the prototypical zinc finger protein, transcription factor IIIA (TFIIIA) from Xenopus laevis. High covalency to cysteine and histidine is implied by ENDOR-derived 1H couplings to protons of cysteinyl ligands and 14N couplings to histidyl nitrogens, results which support the expectation that Zn(II) and Co(II) bind to F3 in a very similar manner. No changes in either 1H or 14N ENDOR were detected upon binding Co(II)-F3 to C-block DNA.

View Article and Find Full Text PDF

The reactivity of chromate or Cr(VI) with rabbit liver metallothionein (MT) was explored in this study. Zn(7)-MT reacts very slowly with Cr(VI) in a process characterized by a second-order rate constant of 3.9 x 10(-)(4) M(-)(1) s(-)(1).

View Article and Find Full Text PDF