Background: The G-quadruplex-forming sequence within the KRAS proto-oncogene P1 promoter is a promising target for anticancer therapy. Porphyrin derivatives are among the most rewarding G-quadruplex binders. They can also behave as photosensitizers.
View Article and Find Full Text PDFThis article focuses on the antiradical activity of a number of 2,6-diisobornylphenol-porphyrin conjugates with various spacers between the porphyrin and phenolic fragments in the model reaction of ethylbenzene oxidation initiated by azoisobutyric acid dinitrile. The study has shown that the electronic effects of the groups directly related to the 2,6-diisobornylphenol fragment exert the predominant influence both on the reactivity of the phenolic hydroxyl group in interaction with free radicals and on the antiradical activity of the molecule as a whole. The antiradical activity of the molecule is generally less affected by the nature of the substituents in the porphyrin macrocycle, mainly due to a change in the stoichiometric inhibition coefficient in the presence of relatively easily oxidizable groups.
View Article and Find Full Text PDFA new water-soluble conjugate, consisting of a chlorin-based photosensitizing part, and a 4-arylaminoquinazoline moiety with high potential affinity to an epidermal growth factor receptors (EGFR) and vascular endothelial growth factor receptors (VEGFR), suitable for photodynamic therapy (PDT), was synthesized starting from methylpheophorbide-a in seven steps. An increased accumulation of this compound in A431 cells with high level of EGFR expression, in comparison with CHO and HeLa cells with low EGFR expression was observed. The prepared conjugate exhibits dark and photoinduced cytotoxicity at micromolar concentrations with IC/IC ratio of 11-18.
View Article and Find Full Text PDF