Publications by authors named "Dmitrii Ulrikh"

The accurate estimation of rock strength is an essential task in almost all rock-based projects, such as tunnelling and excavation. Numerous efforts to create indirect techniques for calculating unconfined compressive strength (UCS) have been attempted. This is often due to the complexity of collecting and completing the abovementioned lab tests.

View Article and Find Full Text PDF

This research was completed in the development of studies devoted to relations between the elastic modulus (MoE) and thermal expansivity (CTe) of different materials. This study, based on experimental data, confirmed the models of the relations between MoE and CTe under normal and heating temperatures for thermosetting epoxy polymers and glass-fiber FRPs in two variants (unfilled and filled by mineral additives), after the usual glassing and prolonged thermal conditioning (thermo-relaxation). The experiment was based on dilatometric and elastic deformation testing.

View Article and Find Full Text PDF

Solid particle erosion at room and elevated temperatures of filled and unfilled hot-cured epoxy resin using an anhydride hardener were experimentally tested using an accelerated method on a special bench. Micro-sized dispersed industrial wastes were used as fillers: fly ash from a power plant and spent filling material from a copper mining and processing plant. The results showed that the wear of unfilled epoxy resin significantly decreases with increasing temperature, while the dependence on the temperature of the wear intensity at an impingement angle of 45° is linear and inversely proportional, and at an angle of 90°, non-linear.

View Article and Find Full Text PDF

Thermal expanding is the important property that defines the stress-strain condition of GRP structures exploited under heating and having limited thermal resistance. So, the GRPs' thermal expanding prediction is the actual requirement of such structures design. The experimental accurate dilatometric study resulted in the non-linearity of thermosetting polymers and plastics thermal expanding under heating.

View Article and Find Full Text PDF

Concrete is the most widely used material in construction. It has the characteristics of strong plasticity, good economy, high safety, and good durability. As a kind of structural material, concrete must have sufficient strength to resist various loads.

View Article and Find Full Text PDF

During design and construction of buildings, the employed materials can substantially impact the structures' performance. In composite columns, the properties and performance of concrete and steel have a significant influence on the behavior of structure under various loading conditions. In this study, two metaheuristic algorithms, particle swarm optimization (PSO) and competitive imperialism algorithm (ICA), were combined with the artificial neural network (ANN) model to predict the bearing capacity of the square concrete-filled steel tube (SCFST) columns.

View Article and Find Full Text PDF

Fiber-reinforced polymer (FRP) has several benefits, in addition to excellent tensile strength and low self-weight, including corrosion resistance, high durability, and easy construction, making it among the most optimum options for concrete structure restoration. The bond behavior of the FRP-concrete (FRPC) interface, on the other hand, is extremely intricate, making the bond strength challenging to estimate. As a result, a robust modeling framework is necessary.

View Article and Find Full Text PDF

The work is devoted to the prediction and experimental research of the elastic bending modulus of glass-reinforced plastics with an epoxy matrix on anhydride hardener reinforced with different glass fabrics. Experimental studies have been carried out to assess the effect of thermal relaxation of the polymer matrix structure due to long-term exposure to elevated temperatures (above the glass transition temperature of the polymer matrix) on the GRP elastic bending modulus at temperatures ranging from 25 to 180 °C. It has been shown that due to the thermal relaxation of the polymer matrix structure, the GRP modulus increases significantly at temperatures above 110 °C and decreases slightly at lower temperatures.

View Article and Find Full Text PDF