Beneficial medical laser ablation removes material efficiently with minimal collateral damage. A Mark-III free electron laser (FEL), at a wavelength of 6.45 μm has demonstrated minimal damage and high ablation yield in ocular and neural tissues.
View Article and Find Full Text PDFLiposomal formulations of drugs have been shown to enhance drug efficacy by prolonging circulation time, increasing local concentration and reducing off-target effects. Controlled release from these formulations would increase their utility, and hyperthermia has been explored as a stimulus for targeted delivery of encapsulated drugs. Use of lasers as a thermal source could provide improved control over the release of the drug from the liposomes with minimal collateral tissue damage.
View Article and Find Full Text PDFObjective: To reveal, on a cellular and molecular level, how skeletal regeneration of a corticotomy is enhanced when using laser-plasma mediated ablation compared with conventional mechanical tissue removal.
Summary Background Data: Osteotomies are well-known for their most detrimental side effect: thermal damage. This thermal and mechanical trauma to adjacent bone tissue can result in the untoward consequences of cell death and eventually in a delay in healing.
Background And Objectives: Investigations with a Mark-III free electron laser, tuned to 6.45 microm in wavelength have demonstrated minimal collateral damage and high ablation yield in ocular and neural tissues. While the use of mid-IR light produced by the free electron laser (FEL) has shown much promise for surgical applications, further advances are limited due the high costs of its use.
View Article and Find Full Text PDF