Publications by authors named "Dmitrii Rakov"

Unwanted processes in metal anode batteries, e.g., non-uniform metal electrodeposition, electrolyte decomposition, and/or short-circuiting, are not fully captured by the electrolyte bulk solvation structure but rather defined by the electrode-electrolyte interface and its changes induced by cycling conditions.

View Article and Find Full Text PDF

The latest advances in the stabilization of Li/Na metal battery and Li-ion battery cycling have highlighted the importance of electrode/electrolyte interface [solid electrolyte interphase (SEI)] and its direct link to cycling behavior. To understand the structure and properties of the SEI, we used combined experimental and computational studies to unveil how the ionic liquid (IL) cation nature and salt concentration impact the silicon/IL electrolyte interfacial structure and the formed SEI. The nature of the IL cation is found to be important to control the electrolyte reductive decomposition that influences the SEI composition and properties and the reversibility of the Li-Si alloying process.

View Article and Find Full Text PDF

Non-uniform metal deposition and dendrite formation in high-density energy storage devices reduces the efficiency, safety and life of batteries with metal anodes. Superconcentrated ionic-liquid electrolytes (for example 1:1 ionic liquid:alkali ion) coupled with anode preconditioning at more negative potentials can completely mitigate these issues, and therefore revolutionize high-density energy storage devices. However, the mechanisms by which very high salt concentration and preconditioning potential enable uniform metal deposition and prevent dendrite formation at the metal anode during cycling are poorly understood, and therefore not optimized.

View Article and Find Full Text PDF

The interphase layer that forms on either the anode or the cathode is considered to be one of the critical components of a high performing battery. This solid-electrolyte interphase (SEI) layer determines the stability of the electrode in the presence of a given electrolyte as well as the internal resistance of a battery, and hence the overpotential of a cell. In the case of lithium ion batteries where carbonate based electrolytes are used, additives including hexafluorophosphate (PF), bis-trifluoromethylsulfonimide (TFSI), (fluorosulfonyl)(trifluoromethanesulfonyl)imide (FTFSI), and fluorosulfonimde (FSI) are used to obtain favorable SEI layers.

View Article and Find Full Text PDF

Developing facile routes for fabricating highly efficient oxygen evolution reaction (OER) electrocatalysts is in great demand but remains a great challenge. Herein, a novel molten salt decomposition method to prepare 3D metal nitrate hydroxide (MNH, M = Ni, Co, and Cu) nanoarrays homogenously grown on different conductive substrates, especially on nickel foam (NF) for OER applications, is reported. Compared with the as-prepared CoNH/NF and CuNH/NF, NiNH/NF presents a superior electrocatalytic OER activity and stability in an alkaline solution, with a very low overpotential of only 231 mV versus a reversible hydrogen electrode to deliver a geometrical catalytic current density of 50 mA cm and a low Tafel slope of 81 mV dec , outperforming most reported transition metal compound catalysts.

View Article and Find Full Text PDF

Electrocatalytic hydrogen evolution has attracted a great deal of attention due to the urgent need for clean energy. Herein, we demonstrate the synthesis of ternary pyrite-type cobalt phosphosulphide (CoPS) nanoparticles supported on a nitrogen-doped carbon matrix, CoPS/N-C, through carbonization and subsequent phosphosulfurization of Co-based zeolitic imidazolate frameworks (ZIF-67), as promising hydrogen evolution reaction (HER) electrocatalysts in both acidic and alkaline solutions. The polyhedral structure of ZIF-67 can be well maintained in the as-prepared CoPS/N-C nanocomposites.

View Article and Find Full Text PDF

Here we demonstrate the improvement of the intrinsic electrocatalytic hydrogen evolution activity of NiPS by proper cobalt doping. The optimized NiCoPS nanosheets display a geometric catalytic current density of -10 mA cm at an overpotential of 71 mV vs. RHE and a Tafel slope of 77 mV dec in 1.

View Article and Find Full Text PDF