Publications by authors named "Dmitrii Ivanov"

Photochemical transformations of small molecules, such as -substituted benzaldehydes, in the absence of a photocatalyst are significantly underexplored and may reveal unexpected outcomes. In the present paper, we showed that 2-(2-formylphenoxy)acetic acid and its esters undergo photocyclization into chromanone and benzofuranone derivatives under 365 nm irradiation. The reaction occurs exclusively in dimethyl sulfoxide and can be used to efficiently obtain hydroxychromanones in good yields (27-91%).

View Article and Find Full Text PDF

2-Allyloxybenzaldehydes undergo [2 + 1] cycloadditions under 365 nm LED irradiation to form the corresponding chroman-fused cyclopropanols. The reaction proceeds easily without any catalysts or additives in dimethyl sulfoxide.

View Article and Find Full Text PDF

Within the era of battery technology, the urgent demand for improved and safer electrolytes is immanent. In this work, novel electrolytes, based on pyrrolidinium-bistrifluoromethanesulfonyl-imide polymeric ionic liquids (POILs), equipped with quadrupolar hydrogen-bonding moieties of ureido-pyrimidinone (UPy) to mediate self-healing properties were synthesized. Reversible addition-fragmentation chain-transfer (RAFT) polymerization was employed using S,S-dibenzyl trithiocarbonate as the chain transfer agent to produce precise POILs with a defined amount of UPy and POIL-moieties.

View Article and Find Full Text PDF

A new simple one-pot two-step protocol for the synthesis of 2-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate from 2-(2-(benzylamino)benzylidene)malonate under the action of BF3·Et2O was developed. It was shown that the reaction proceeds through the formation of a stable iminium intermediate containing a difluoroboryl bridge in the dicarbonyl fragment of the molecule.

View Article and Find Full Text PDF

Clinical tests based on whole-genome sequencing are generally focused on a single task approach, testing one or several parameters, although whole-genome sequencing (WGS) provides us with large data sets that can be used for many supportive analyses. In spite of low genome coverage, data of WGS-based non-invasive prenatal testing (NIPT) contain fully sequenced mitochondrial DNA (mtDNA). This mtDNA can be used for variant calling, ancestry analysis, population studies and other approaches that extend NIPT functionality.

View Article and Find Full Text PDF