In the past decade, stimuli-responsive hydrogels are increasingly studied as biomaterials for tissue engineering and regenerative medicine purposes. Smart hydrogels can not only replicate the physicochemical properties of the extracellular matrix but also mimic dynamic processes that are crucial for the regulation of cell behavior. Dynamic changes can be influenced by the hydrogel itself (isotropic vs anisotropic) or guided by applying localized triggers.
View Article and Find Full Text PDFThe growing number of drug-resistant pathogenic bacteria poses a global threat to human health. For this reason, the search for ways to enhance the antibacterial activity of existing antibiotics is now an urgent medical task. The aim of this study was to develop novel delivery systems for polymyxins to improve their antimicrobial properties against various infections.
View Article and Find Full Text PDFPolymyxins are peptide antibiotics that are highly efficient against many multidrug resistant pathogens. However, the poor stability of polymyxins in the bloodstream requires the administration of high drug doses that, in turn, can lead to polymyxin toxicity. Consequently, different delivery systems have been considered for polymyxins to overcome these obstacles.
View Article and Find Full Text PDF