Electrostatically stabilized nanocrystals (NCs) and, in particular, quantum dots (QDs) hold promise for forming strongly coupled superlattices due to their compact and electronically conductive surface ligands. However, studies of the colloidal dispersion and interparticle interactions of electrostatically stabilized sub-10 nm NCs have been limited, hindering the optimization of their colloidal stability and self-assembly. In this study, we employed small-angle X-ray scattering (SAXS) experiments to investigate the interparticle interactions and arrangement of PbS QDs with thiostannate ligands (PbS-SnS) in polar solvents.
View Article and Find Full Text PDFSymmetry control is essential for realizing unconventional properties, such as ferroelectricity, nonlinear optical responses, and complex topological order, thus it holds promise for the design of emerging quantum and photonic systems. Nevertheless, fast and reversible control of symmetry in materials remains a challenge, especially for nanoscale systems. Here, reversible symmetry changes are unveiled in colloidal lead chalcogenide quantum dots on picosecond timescales.
View Article and Find Full Text PDFColloidal quantum dots, with their size-tunable optoelectronic properties and scalable synthesis, enable applications in which inexpensive high-performance semiconductors are needed. Synthesis science breakthroughs have been key to the realization of quantum dot technologies, but important group III-group V semiconductors, including colloidal gallium arsenide (GaAs), still cannot be synthesized with existing approaches. The high-temperature molten salt colloidal synthesis introduced in this work enables the preparation of previously intractable colloidal materials.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2024
Surface chemistry of MXenes is of great interest as the terminations can define the intrinsic properties of this family of materials. The diverse and tunable terminations also distinguish MXenes from many other 2D materials. Conventional fluoride-containing reagents etching approaches resulted in MXenes with mixed fluoro-, oxo-, and hydroxyl surface groups.
View Article and Find Full Text PDFRadiative cooling textiles hold promise for achieving personal thermal comfort under increasing global temperature. However, urban areas have heat island effects that largely diminish the effectiveness of cooling textiles as wearable fabrics because they absorb emitted radiation from the ground and nearby buildings. We developed a mid-infrared spectrally selective hierarchical fabric (SSHF) with emissivity greatly dominant in the atmospheric transmission window through molecular design, minimizing the net heat gain from the surroundings.
View Article and Find Full Text PDFWe explore the potential of nanocrystals (a term used equivalently to nanoparticles) as building blocks for nanomaterials, and the current advances and open challenges for fundamental science developments and applications. Nanocrystal assemblies are inherently multiscale, and the generation of revolutionary material properties requires a precise understanding of the relationship between structure and function, the former being determined by classical effects and the latter often by quantum effects. With an emphasis on theory and computation, we discuss challenges that hamper current assembly strategies and to what extent nanocrystal assemblies represent thermodynamic equilibrium or kinetically trapped metastable states.
View Article and Find Full Text PDFSelf-assembly of colloidal nanocrystals (NCs) into superlattices (SLs) is an appealing strategy to design hierarchically organized materials with promising functionalities. Mechanistic studies are still needed to uncover the design principles for SL self-assembly, but such studies have been difficult to perform due to the fast time and short length scales of NC systems. To address this challenge, we developed an apparatus to directly measure the evolving phases and in real time of an electrostatically stabilized Au NC solution before, during, and after it is quenched to form SLs using small-angle X-ray scattering.
View Article and Find Full Text PDFColloidal semiconductor nanocrystals are an important class of materials which have many desirable optoelectronic properties. In their bulk phases, gallium- and aluminum-containing III-V materials such as GaAs, GaP, and AlGaAs represent some of the most technologically important semiconductors. However, their colloidal synthesis by traditional methods is difficult due to the high temperatures needed to crystallize these highly covalent materials and the extreme reactivity of Ga- and Al- precursors toward organic solvents at such high temperatures.
View Article and Find Full Text PDFConspectusColloidal nanocrystals (NCs) have emerged as a diverse class of materials with tunable composition, size, shape, and surface chemistry. From their facile syntheses to unique optoelectronic properties, these solution-processed nanomaterials are a promising alternative to materials grown as bulk crystals or by vapor-phase methods. However, the integration of colloidal nanomaterials in real-world devices is held back by challenges in making patterned NC films with the resolution, throughput, and cost demanded by device components and applications.
View Article and Find Full Text PDFTwo-dimensional (2D) transition-metal carbides and nitrides (MXenes) combine the electronic and mechanical properties of 2D inorganic crystals with chemically modifiable surfaces, which provides an ideal platform for both fundamental and applied studies of interfaces. Good progress has been achieved in the functionalization of MXenes with small inorganic ligands, but relatively little work has been reported on the covalent bonding of various organic groups to MXene surfaces. Here we synthesize a family of hybrid MXenes (h-MXenes) that incorporate amido- and imido-bonding between organic and inorganic parts by reacting halogen-terminated MXenes with deprotonated organic amines.
View Article and Find Full Text PDFSemiconductor-based biointerfaces are typically established either on the surface of the plasma membrane or within the cytoplasm. In Gram-negative bacteria, the periplasmic space, characterized by its confinement and the presence of numerous enzymes and peptidoglycans, offers additional opportunities for biomineralization, allowing for nongenetic modulation interfaces. We demonstrate semiconductor nanocluster precipitation containing single- and multiple-metal elements within the periplasm, as observed through various electron- and x-ray-based imaging techniques.
View Article and Find Full Text PDFSemiconductors are commonly divided into materials with direct or indirect band gaps based on the relative positions of the top of the valence band and the bottom of the conduction band in crystal momentum () space. It has, however, been debated if is a useful quantum number to describe the band structure in quantum-confined nanocrystalline systems, which blur the distinction between direct and indirect gap semiconductors. In bulk III-V semiconductor alloys like InGaP, the band structure can be tuned continuously from the direct- to indirect-gap by changing the value of .
View Article and Find Full Text PDFSolution-processed semiconductors are in demand for present and next-generation optoelectronic technologies ranging from displays to quantum light sources because of their scalability and ease of integration into devices with diverse form factors. One of the central requirements for semiconductors used in these applications is a narrow photoluminescence (PL) line width. Narrow emission line widths are needed to ensure both color and single-photon purity, raising the question of what design rules are needed to obtain narrow emission from semiconductors made in solution.
View Article and Find Full Text PDFStretchable light-emitting materials are the key components for realizing skin-like displays and optical biostimulation. All the stretchable emitters reported to date, to the best of our knowledge, have been based on electroluminescent polymers that only harness singlet excitons, limiting their theoretical quantum yield to 25%. Here we present a design concept for imparting stretchability onto electroluminescent polymers that can harness all the excitons through thermally activated delayed fluorescence, thereby reaching a near-unity theoretical quantum yield.
View Article and Find Full Text PDFTwo-dimensional transition-metal carbides and nitrides (MXenes) are a large family of materials actively studied for various applications, especially in the field of energy storage. MXenes are commonly synthesized by etching the layered ternary compounds, called MAX phases. We demonstrate a direct synthetic route for scalable and atom-economic synthesis of MXenes, including compounds that have not been synthesized from MAX phases, by the reactions of metals and metal halides with graphite, methane, or nitrogen.
View Article and Find Full Text PDFMXenes have the potential for efficient light-to-heat conversion in photothermal applications. To effectively utilize MXenes in such applications, it is important to understand the underlying nonequilibrium processes, including electron-phonon and phonon-phonon couplings. Here, we use transient electron and X-ray diffraction to investigate the heating and cooling of photoexcited MXenes at femtosecond to nanosecond time scales.
View Article and Find Full Text PDFWe report spin-polarized transient absorption for colloidal CdSe nanoplatelets as functions of thickness (2-6 monolayer thickness) and core/shell motif. Using electro-optical modulation of co- and cross-polarization pump-probe combinations, we sensitively observe spin-polarized transitions. Core-only nanoplatelets exhibit few-picosecond spin lifetimes that weakly increase with layer thickness.
View Article and Find Full Text PDFGroup III nitrides are of great technological importance for electronic devices. These materials have been widely manufactured high-temperature methods such as physical vapor transport (PVT), chemical vapor deposition (CVD), and hydride vapor phase epitaxy (HVPE). The preparation of group III nitrides by colloidal synthesis methods would provide significant advantages in the form of optical tunability size and shape control and enable cost reductions through scalable solution-based device integration.
View Article and Find Full Text PDFAll-inorganic nanocrystals (NCs) are of great importance in a range of electronic devices. However, current all-inorganic NCs suffer from limitations in their optical properties, such as low fluorescence efficiencies. Here, we develop a general surface treatment strategy to obtain intensely luminescent all-inorganic NCs (ILANs) by using designed metal salts with noncoordinating anions that play a dual role in the surface treatment process: (i) removing the original organic ligands and (ii) binding to unpassivated Lewis basic sites to preserve the photoluminescent (PL) properties of the NCs.
View Article and Find Full Text PDFConducting organic materials, such as doped organic polymers, molecular conductors and emerging coordination polymers, underpin technologies ranging from displays to flexible electronics. Realizing high electrical conductivity in traditionally insulating organic materials necessitates tuning their electronic structure through chemical doping. Furthermore, even organic materials that are intrinsically conductive, such as single-component molecular conductors, require crystallinity for metallic behaviour.
View Article and Find Full Text PDFPhotothermoelectric (PTE) materials are promising candidates for solar energy harvesting and photodetection applications, especially for near-infrared (NIR) wavelengths. Although the processability and tunability of organic materials are highly advantageous, examples of organic PTE materials are comparatively rare and their PTE performance is typically limited by poor photothermal (PT) conversion. Here, we report the use of redox-active Sn complexes of tetrathiafulvalene-tetrathiolate (TTFtt) as transmetalating agents for the synthesis of presynthetically redox tuned NiTTFtt materials.
View Article and Find Full Text PDFMicroscale patterning of colloidal nanocrystal (NC) films is important for their integration in devices. Here, we introduce the direct optical patterning of all-inorganic NCs without the use of additional photosensitive ligands or additives. We determined that photoexposure of ligand-stripped, "bare" NCs in air significantly reduces their solubility in polar solvents due to photo-oxidation of surface ions.
View Article and Find Full Text PDF