Publications by authors named "Dmitri V Sakharov"

Oxidative stress induced in tumor cells undergoing photodynamic treatment (PDT) leads to extensive modification of many proteins in these cells. Protein oxidation mainly gives rise to formation of carbonyls and oxidized thiols. The immediate targets of PDT-induced protein oxidation in A431 tumor cells have been identified using a proteomic approach involving selective biotinylation, affinity purification and mass spectrometric identification of modified proteins.

View Article and Find Full Text PDF

The question whether molecular dynamics (MD) simulations can yield reliable structural and dynamical properties of metalloproteins depend on the accuracy of the force field, i.e., the potential energy function (PEF) and associated parameters modeling the interactions of the metal ion of interest with water and protein ligands.

View Article and Find Full Text PDF

Phthalocyanines (Pcs) are a class of photosensitizers (PSs) with a strong tendency to aggregate in aqueous environment, which has a negative influence on their photosensitizing ability in photodynamic therapy. Pcs with either peripheral or axial solketal substituents, that is, ZnPc(sol)8 and Si(sol)2Pc, respectively, were synthesized and their tendency to aggregate as well as their photodynamic properties in 14C and B16F10 cell lines were evaluated. The results were compared to more hydrophilic silicon Pcs, that is, Si(PEG750)2Pc and Pc4.

View Article and Find Full Text PDF

Nearly half of all proteins contain metal ions, which perform a wide variety of specific functions associated with life processes. However, insights into the local/global, structural and dynamical fluctuations in metalloproteins from molecular dynamics simulations have been hampered by the "conventional" potential energy function (PEF) used in nonmetalloprotein simulations, which does not take into the nonnegligible charge transfer and polarization effects in many metal complexes. Here, we have carried out molecular dynamics simulations of Zn(2+) bound to Cys(-) and/or His(0) in proteins using both the conventional PEF and a novel PEF that accounts for the significant charge transfer and polarization effects in these Zn complexes.

View Article and Find Full Text PDF

Fibril formation of islet amyloid polypeptide (IAPP) is associated with cell death of the insulin-producing pancreatic beta-cells in patients with Type 2 Diabetes Mellitus. A likely cause for the cytotoxicity of human IAPP is that it destroys the barrier properties of the cell membrane. Here, we show by fluorescence confocal microscopy on lipid vesicles that the process of hIAPP amyloid formation is accompanied by a loss of barrier function, whereby lipids are extracted from the membrane and taken up in the forming amyloid deposits.

View Article and Find Full Text PDF

Amediplase (K(2) tu-PA) is a hybrid plasminogen activator, consisting of the kringle 2 domain of alteplase and the protease domain of urokinase. The objective of this study was to determine the in vitro clot penetration of amediplase in relation to its fibrin binding and to compare the properties with those of alteplase. The clot lysis activity of amediplase in internal clot lysis models (both purified system and plasma system) was about 10 times less than that of alteplase.

View Article and Find Full Text PDF

Photodynamic treatment (PDT) is an emerging therapeutic procedure for the management of cancer, based on the use of photosensitizers, compounds that generate highly reactive oxygen species (ROS) on irradiation with visible light. The ROS generated may oxidize a variety of biomolecules within the cell, loaded with a photosensitizer. The high reactivity of these ROS restricts their radius of action to 5-20 nm from the site of their generation.

View Article and Find Full Text PDF

We use mathematical modelling to delineate the influence of two important factors on local pharmacokinetics of a drug delivered via an eluting stent, namely: (1) diffusional resistance of a stent coating, and (2) reversible binding of a drug to the vascular tissue. A system of differential equations that describes diffusion of the drug out of the polymeric coating of the stent into the vascular tissue and into the bloodstream, as well as reversible binding of the drug within the vascular tissue, was solved numerically and the spatial profiles of the concentration of the drug at various points of time were produced and analysed. Also, kinetic curves of the spatial average concentration of the drug within the wall were constructed, and the areas under those curves (AUC) were calculated.

View Article and Find Full Text PDF

Protein oxidation of human umbilical-vein endothelial cells (HUVEC) in culture was examined under various conditions of oxidative stress. Extracellular protein (ECP) oxidation was assessed by determining dityrosine bond formation, which is indicated by the covalent coupling of the membrane-impermeable tyramine-fluorescein conjugate (TyrFluo) to HUVEC proteins. The acetylated membrane-permeable form of TyrFluo (acetylTyrFluo) was used for the determination of intracellular protein (ICP) oxidation.

View Article and Find Full Text PDF