Background: Huntington's disease (HD) is a neurodegenerative disorder with selective vulnerability of striatal neurons and involves extensive transcriptional dysregulation early in the disease process. Previous work in cell and mouse models has shown that histone modifications are altered in HD. Specifically, monoubiquitylated histone H2A (uH2A) is present at the promoters of downregulated genes which led to the hypothesis that uH2A plays a role in transcriptional silencing in HD.
View Article and Find Full Text PDFIn Huntington's disease (HD; MIM ID #143100), a fatal neurodegenerative disorder, transcriptional dysregulation is a key pathogenic feature. Histone modifications are altered in multiple cellular and animal models of HD suggesting a potential mechanism for the observed changes in transcriptional levels. In particular, previous work has suggested an important link between decreased histone acetylation, particularly acetylated histone H3 (AcH3; H3K9K14ac), and downregulated gene expression.
View Article and Find Full Text PDF