Proc Natl Acad Sci U S A
April 2015
The oxygen isotopic composition of hydrothermally altered rocks partly originates from the interacting fluid. We use the triple oxygen isotope composition ((17)O/(16)O, (18)O/(16)O) of Proterozoic rocks to reconstruct the (18)O/(16)O ratio of ancient meteoric waters. Some of these waters have originated from snowball Earth glaciers and thus give insight into the climate and hydrology of these critical intervals in Earth history.
View Article and Find Full Text PDFThe conserved domain database (CDD) is part of NCBI's Entrez database system and serves as a primary resource for the annotation of conserved domain footprints on protein sequences in Entrez. Entrez's global query interface can be accessed at http://www.ncbi.
View Article and Find Full Text PDFEukaryotic cell cycles are driven by a set of regulators that have undergone lineage-specific gene loss, duplication, or divergence in different taxa. It is not known to what extent these genomic processes contribute to differences in cell cycle regulatory programs and cell division mechanisms among different taxonomic groups. We have undertaken a genome-wide characterization of the cell cycle genes encoded by Chlamydomonas reinhardtii, a unicellular eukaryote that is part of the green algal/land plant clade.
View Article and Find Full Text PDFIn this study we systematically examined the differences between the proteomes of Metazoa and other eukaryotes. Metazoans (Homo sapiens, Ceanorhabditis elegans and Drosophila melanogaster) were compared with a plant (Arabidopsis thaliana), fungi (Saccharomyces cerevisiae and Schizosaccaromyces pombe) and Encephalitozoan cuniculi. We identified 159 gene families that were probably lost in the Metazoan branch and 1263 orthologous families that were specific to Metazoa and were likely to have originated in their last common ancestor (LCA).
View Article and Find Full Text PDFBackground: Sequencing the genomes of multiple, taxonomically diverse eukaryotes enables in-depth comparative-genomic analysis which is expected to help in reconstructing ancestral eukaryotic genomes and major events in eukaryotic evolution and in making functional predictions for currently uncharacterized conserved genes.
Results: We examined functional and evolutionary patterns in the recently constructed set of 5,873 clusters of predicted orthologs (eukaryotic orthologous groups or KOGs) from seven eukaryotic genomes: Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens, Arabidopsis thaliana, Saccharomyces cerevisiae, Schizosaccharomyces pombe and Encephalitozoon cuniculi. Conservation of KOGs through the phyletic range of eukaryotes strongly correlates with their functions and with the effect of gene knockout on the organism's viability.
Lineage-specific gene loss, to a large extent, accounts for the differences in gene repertoires between genomes, particularly among eukaryotes. We derived a parsimonious scenario of gene losses for eukaryotic orthologous groups (KOGs) from seven complete eukaryotic genomes. The scenario involves substantial gene loss in fungi, nematodes, and insects.
View Article and Find Full Text PDFBackground: The availability of multiple, essentially complete genome sequences of prokaryotes and eukaryotes spurred both the demand and the opportunity for the construction of an evolutionary classification of genes from these genomes. Such a classification system based on orthologous relationships between genes appears to be a natural framework for comparative genomics and should facilitate both functional annotation of genomes and large-scale evolutionary studies.
Results: We describe here a major update of the previously developed system for delineation of Clusters of Orthologous Groups of proteins (COGs) from the sequenced genomes of prokaryotes and unicellular eukaryotes and the construction of clusters of predicted orthologs for 7 eukaryotic genomes, which we named KOGs after eukaryotic orthologous groups.
Protein kinases regulate a number of critical events in mitosis and meiosis. A study of the evolution of kinases involved in cell cycle control (CCC) might shed light on the evolution of the eukaryotic cell cycle. In particular, applying quantitative phylogenetic methods to key CCC kinases could provide information on the relative timing of gene duplication events.
View Article and Find Full Text PDF