We consider random hyperbolic graphs in hyperbolic spaces of any dimension d+1≥2. We present a rescaling of model parameters that casts the random hyperbolic graph model of any dimension to a unified mathematical framework, leaving the degree distribution invariant with respect to the dimension. Unlike the degree distribution, clustering does depend on the dimension, decreasing to 0 at d→∞.
View Article and Find Full Text PDFThe structure of a network is an unlabeled graph, yet graphs in most models of complex networks are labeled by meaningless random integers. Is the associated labeling noise always negligible, or can it overpower the network-structural signal? To address this question, we introduce and consider the sparse unlabeled versions of popular network models and compare their entropy against the original labeled versions. We show that labeled and unlabeled Erdős-Rényi graphs are entropically equivalent, even though their degree distributions are very different.
View Article and Find Full Text PDFModels of complex networks often incorporate node-intrinsic properties abstracted as hidden variables. The probability of connections in the network is then a function of these variables. Real-world networks evolve over time and many exhibit dynamics of node characteristics as well as of linking structure.
View Article and Find Full Text PDFWe introduce network science as a framework for studying the string landscape. Two large networks of string geometries are constructed, where nodes are extra-dimensional six-manifolds and edges represent topological transitions between them. We show that a standard bubble cosmology model on the networks has late-time behavior determined by the largest eigenvector of -(L+D), where L and D are the Laplacian and degree matrices of the networks, which provides a dynamical mechanism for vacuum selection in the string landscape.
View Article and Find Full Text PDFA projective network model is a model that enables predictions to be made based on a subsample of the network data, with the predictions remaining unchanged if a larger sample is taken into consideration. An exchangeable model is a model that does not depend on the order in which nodes are sampled. Despite a large variety of non-equilibrium (growing) and equilibrium (static) sparse complex network models that are widely used in network science, how to reconcile sparseness (constant average degree) with the desired statistical properties of projectivity and exchangeability is currently an outstanding scientific problem.
View Article and Find Full Text PDFWe analyze the stability of the network's giant connected component under impact of adverse events, which we model through the link percolation. Specifically, we quantify the extent to which the largest connected component of a network consists of the same nodes, regardless of the specific set of deactivated links. Our results are intuitive in the case of single-layered systems: the presence of large degree nodes in a single-layered network ensures both its robustness and stability.
View Article and Find Full Text PDFRandom geometric graphs in hyperbolic spaces explain many common structural and dynamical properties of real networks, yet they fail to predict the correct values of the exponents of power-law degree distributions observed in real networks. In that respect, random geometric graphs in asymptotically de Sitter spacetimes, such as the Lorentzian spacetime of our accelerating universe, are more attractive as their predictions are more consistent with observations in real networks. Yet another important property of hyperbolic graphs is their navigability, and it remains unclear if de Sitter graphs are as navigable as hyperbolic ones.
View Article and Find Full Text PDFDespite the abundance of bipartite networked systems, their organizing principles are less studied compared to unipartite networks. Bipartite networks are often analyzed after projecting them onto one of the two sets of nodes. As a result of the projection, nodes of the same set are linked together if they have at least one neighbor in common in the bipartite network.
View Article and Find Full Text PDFNetwork models with latent geometry have been used successfully in many applications in network science and other disciplines, yet it is usually impossible to tell if a given real network is geometric, meaning if it is a typical element in an ensemble of random geometric graphs. Here we identify structural properties of networks that guarantee that random graphs having these properties are geometric. Specifically we show that random graphs in which expected degree and clustering of every node are fixed to some constants are equivalent to random geometric graphs on the real line, if clustering is sufficiently strong.
View Article and Find Full Text PDFData transfer is one of the main functions of the Internet. The Internet consists of a large number of interconnected subnetworks or domains, known as Autonomous Systems (ASes). Due to privacy and other reasons the information about what route to use to reach devices within other ASes is not readily available to any given AS.
View Article and Find Full Text PDFRepresented as graphs, real networks are intricate combinations of order and disorder. Fixing some of the structural properties of network models to their values observed in real networks, many other properties appear as statistical consequences of these fixed observables, plus randomness in other respects. Here we employ the dk-series, a complete set of basic characteristics of the network structure, to study the statistical dependencies between different network properties.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2015
We introduce and explore a method for inferring hidden geometric coordinates of nodes in complex networks based on the number of common neighbors between the nodes. We compare this approach to the HyperMap method, which is based only on the connections (and disconnections) between the nodes, i.e.
View Article and Find Full Text PDFCommon sense suggests that networks are not random mazes of purposeless connections, but that these connections are organized so that networks can perform their functions well. One function common to many networks is targeted transport or navigation. Here, using game theory, we show that minimalistic networks designed to maximize the navigation efficiency at minimal cost share basic structural properties with real networks.
View Article and Find Full Text PDFAll real networks are different, but many have some structural properties in common. There seems to be no consensus on what the most common properties are, but scale-free degree distributions, strong clustering, and community structure are frequently mentioned without question. Surprisingly, there exists no simple generative mechanism explaining all the three properties at once in growing networks.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2014
The entropy of network ensembles characterizes the amount of information encoded in the network structure and can be used to quantify network complexity and the relevance of given structural properties observed in real network datasets with respect to a random hypothesis. In many real networks the degrees of individual nodes are not fixed but change in time, while their statistical properties, such as the degree distribution, are preserved. Here we characterize the distribution of entropy of random networks with given degree sequences, where each degree sequence is drawn randomly from a given degree distribution.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2013
In statistical physics any given system can be either at an equilibrium or away from it. Networks are not an exception. Most network models can be classified as either equilibrium or growing.
View Article and Find Full Text PDFPrediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks.
View Article and Find Full Text PDFThe principle that 'popularity is attractive' underlies preferential attachment, which is a common explanation for the emergence of scaling in growing networks. If new connections are made preferentially to more popular nodes, then the resulting distribution of the number of connections possessed by nodes follows power laws, as observed in many real networks. Preferential attachment has been directly validated for some real networks (including the Internet), and can be a consequence of different underlying processes based on node fitness, ranking, optimization, random walks or duplication.
View Article and Find Full Text PDFWe introduce and study random bipartite networks with hidden variables. Nodes in these networks are characterized by hidden variables that control the appearance of links between node pairs. We derive analytic expressions for the degree distribution, degree correlations, the distribution of the number of common neighbors, and the bipartite clustering coefficient in these networks.
View Article and Find Full Text PDFWe provide a simple proof that graphs in a general class of self-similar networks have zero percolation threshold. The considered self-similar networks include random scale-free graphs with given expected node degrees and zero clustering, scale-free graphs with finite clustering and metric structure, growing scale-free networks, and many real networks. The proof and the derivation of the giant component size do not require the assumption that networks are treelike.
View Article and Find Full Text PDFWe develop a geometric framework to study the structure and function of complex networks. We assume that hyperbolic geometry underlies these networks, and we show that with this assumption, heterogeneous degree distributions and strong clustering in complex networks emerge naturally as simple reflections of the negative curvature and metric property of the underlying hyperbolic geometry. Conversely, we show that if a network has some metric structure, and if the network degree distribution is heterogeneous, then the network has an effective hyperbolic geometry underneath.
View Article and Find Full Text PDFThe Internet infrastructure is severely stressed. Rapidly growing overheads associated with the primary function of the Internet-routing information packets between any two computers in the world-cause concerns among Internet experts that the existing Internet routing architecture may not sustain even another decade. In this paper, we present a method to map the Internet to a hyperbolic space.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2009
We show that heterogeneous degree distributions in observed scale-free topologies of complex networks can emerge as a consequence of the exponential expansion of hidden hyperbolic space. Fermi-Dirac statistics provides a physical interpretation of hyperbolic distances as energies of links. The hidden space curvature affects the heterogeneity of the degree distribution, while clustering is a function of temperature.
View Article and Find Full Text PDFRandom scale-free networks are ultrasmall worlds. The average length of the shortest paths in networks of size N scales as lnlnN. Here we show that these ultrasmall worlds can be navigated in ultrashort time.
View Article and Find Full Text PDF