Three challenges compromise the utility of mathematical models of groundwater and other environmental systems: (1) a dizzying array of model analysis methods and metrics make it difficult to compare evaluations of model adequacy, sensitivity, and uncertainty; (2) the high computational demands of many popular model analysis methods (requiring 1000's, 10,000 s, or more model runs) make them difficult to apply to complex models; and (3) many models are plagued by unrealistic nonlinearities arising from the numerical model formulation and implementation. This study proposes a strategy to address these challenges through a careful combination of model analysis and implementation methods. In this strategy, computationally frugal model analysis methods (often requiring a few dozen parallelizable model runs) play a major role, and computationally demanding methods are used for problems where (relatively) inexpensive diagnostics suggest the frugal methods are unreliable.
View Article and Find Full Text PDFEnviron Sci Technol
February 2009
Geological storage of carbon dioxide (CO2) is likely to be an integral component of any realistic plan to reduce anthropogenic greenhouse gas emissions. In conjunction with large-scale deployment of carbon storage as a technology, there is an urgent need for tools which provide reliable and quick assessments of aquifer storage performance. Previously, abandoned wells from over a century of oil and gas exploration and production have been identified as critical potential leakage paths.
View Article and Find Full Text PDFSequestration of CO2 in geologic reservoirs is one of the promising technologies currently being explored to mitigate anthropogenic CO2 emissions. Large-scale deployment of geologic sequestration will require seals with a cumulative area amounting to hundreds of square kilometers per year and will require a large number of sequestration sites. We are developing a system-level model, CO2-PENS, that will predict the overall performance of sequestration systems while taking into account various processes associated with different parts of a sequestration operation, from the power plant to sequestration reservoirs to the accessible environment.
View Article and Find Full Text PDF