This study addresses the challenge of enhancing the transverse mechanical properties of oriented polyacrylonitrile (PAN) nanofibers, which are known for their excellent longitudinal tensile strength, without significantly compromising their inherent porosity, which is essential for effective filtration. This study explores the effects of doping PAN nanofiber composites with varying concentrations of polyvinyl alcohol (PVA) (0.5%, 1%, and 2%), introduced into the PAN matrix via a dip-coating method.
View Article and Find Full Text PDFThis study focuses on the mechanical properties of electrospun nanofibrous mats, highlighting the importance of the characteristics of single nanofibers in determining the overall mechanical behavior of the mats. Recognizing the significant impacts of the diameter and structural properties of the nanofibers, this research introduces a novel methodology for deriving the effects of the mechanical properties of single nanofibers on the aggregate mechanical performance of electrospun oriented nanofiber mats. For this purpose, a finite element method (FEM) model is developed to simulate the elastoplastic response of the mats, incorporating the influence of structural parameters on mechanical properties.
View Article and Find Full Text PDFThe circularity of polymer waste is an emerging field of research in Europe. In the present research, the thermal, surface, mechanical, and tribological properties of polypropylene (PP)-based composite produced by injection molding were studied. The pure PP matrix was reinforced with 10, 30, and 40% wt.
View Article and Find Full Text PDF