Publications by authors named "Dmitri D Pervouchine"

Eukaryotic cells express a large number of transcripts from a single gene due to alternative splicing. Despite hundreds of thousands of splice isoforms being annotated in databases, it has been reported that the current exon catalogs remain incomplete. At the same time, introns of human protein-coding (PC) genes contain a large number of evolutionarily conserved elements with unknown function.

View Article and Find Full Text PDF

The mammalian and genes encode structurally related proteins from the bromodomain and extraterminal domain protein family. The expression of is regulated by unproductive splicing upon inclusion of exon 3b, which is located in the region encoding a bromodomain. Bioinformatic analysis indicated that exon 3b inclusion is controlled by a pair of conserved complementary regions (PCCR) located in the flanking introns.

View Article and Find Full Text PDF

Over recent years, long-range RNA structure has emerged as a factor that is fundamental to alternative splicing regulation. An increasing number of human disorders are now being associated with splicing defects; hence it is essential to develop methods that assess long-range RNA structure experimentally. RNA in situ conformation sequencing (RIC-seq) is a method that recapitulates RNA structure within physiological RNA-protein complexes.

View Article and Find Full Text PDF

Alternative splicing (AS) and alternative polyadenylation (APA) are two crucial steps in the post-transcriptional regulation of eukaryotic gene expression. Protocols capturing and sequencing RNA 3'-ends have uncovered widespread intronic polyadenylation (IPA) in normal and disease conditions, where it is currently attributed to stochastic variations in the pre-mRNA processing. Here, we took advantage of the massive amount of RNA-seq data generated by the Genotype Tissue Expression project (GTEx) to simultaneously identify and match tissue-specific expression of intronic polyadenylation sites with tissue-specific splicing.

View Article and Find Full Text PDF

Eukaryotic gene expression is regulated post-transcriptionally by a mechanism called unproductive splicing, in which mRNA is triggered to degrade by the nonsense-mediated decay (NMD) pathway as a result of regulated alternative splicing (AS). Only a few dozen unproductive splicing events (USEs) are currently documented, and many more remain to be identified. Here, we analyzed RNA-seq experiments from the Genotype-Tissue Expression (GTEx) Consortium to identify USEs, in which an increase in the NMD isoform splicing rate is accompanied by tissue-specific down-regulation of the host gene.

View Article and Find Full Text PDF

Significant alterations in signaling pathways and transcriptional regulatory programs together represent major hallmarks of many cancers. These, among all, include the reactivation of stemness, which is registered by the expression of pathways that are active in the embryonic stem cells (ESCs). Here, we assembled gene sets that reflect the stemness and proliferation signatures and used them to analyze a large panel of RNA-seq data from The Cancer Genome Atlas (TCGA) Consortium in order to specifically assess the expression of stemness-related and proliferation-related genes across a collection of different tumor types.

View Article and Find Full Text PDF

Tandem alternative splice sites (TASS) is a special class of alternative splicing events that are characterized by a close tandem arrangement of splice sites. Most TASS lack functional characterization and are believed to arise from splicing noise. Based on the RNA-seq data from the Genotype Tissue Expression project, we present an extended catalogue of TASS in healthy human tissues and analyze their tissue-specific expression.

View Article and Find Full Text PDF

The mammalian Ate1 gene encodes an arginyl transferase enzyme with tumor suppressor function that depends on the inclusion of one of the two mutually exclusive exons (MXE), exons 7a and 7b. We report that the molecular mechanism underlying MXE splicing in Ate1 involves five conserved regulatory intronic elements R1-R5, of which R1 and R4 compete for base pairing with R3, while R2 and R5 form an ultra-long-range RNA structure spanning 30 Kb. In minigenes, single and double mutations that disrupt base pairings in R1R3 and R3R4 lead to the loss of MXE splicing, while compensatory triple mutations that restore RNA structure revert splicing to that of the wild type.

View Article and Find Full Text PDF

We have produced RNA sequencing data for 53 primary cells from different locations in the human body. The clustering of these primary cells reveals that most cells in the human body share a few broad transcriptional programs, which define five major cell types: epithelial, endothelial, mesenchymal, neural, and blood cells. These act as basic components of many tissues and organs.

View Article and Find Full Text PDF
Circular exonic RNAs: When RNA structure meets topology.

Biochim Biophys Acta Gene Regul Mech

February 2020

Although RNA circularization was first documented in the 1990s, the extent to which it occurs was not known until recent advances in high-throughput sequencing enabled the widespread identification of circular RNAs (circRNAs). Despite this, many aspects of circRNA biogenesis, structure, and function yet remain obscure. This review focuses on circular exonic RNAs, a subclass of circRNAs that are generated through backsplicing.

View Article and Find Full Text PDF

Alternative splicing is a commonly-used mechanism of diversifying gene products. Mutually exclusive exons (MXE) represent a particular type of alternative splicing, in which one and only one exon from an array is included in the mature RNA. A number of genes with MXE do so by using a mechanism that depends on RNA structure.

View Article and Find Full Text PDF

The ability to form an intramolecular structure plays a fundamental role in eukaryotic RNA biogenesis. Proximate regions in the primary transcripts fold into a local secondary structure, which is then hierarchically assembled into a tertiary structure that is stabilized by RNA-binding proteins and long-range intramolecular base pairings. While the local RNA structure can be predicted reasonably well for short sequences, long-range structure at the scale of eukaryotic genes remains problematic from the computational standpoint.

View Article and Find Full Text PDF

Background: A comparison of transcriptional profiles derived from different tissues in a given species or among different species assumes that commonalities reflect evolutionarily conserved programs and that differences reflect species or tissue responses to environmental conditions or developmental program staging. Apparently conflicting results have been published regarding whether organ-specific transcriptional patterns dominate over species-specific patterns, or vice versa, making it unclear to what extent the biology of a given organism can be extrapolated to another. These studies have in common that they treat the transcriptomes monolithically, implicitly ignoring that each gene is likely to have a specific pattern of transcriptional variation across organs and species.

View Article and Find Full Text PDF

Transcriptional regulation and posttranscriptional processing underlie many cellular and organismal phenotypes. We used RNA sequence data generated by Genotype-Tissue Expression (GTEx) project to investigate the patterns of transcriptome variation across individuals and tissues. Tissues exhibit characteristic transcriptional signatures that show stability in postmortem samples.

View Article and Find Full Text PDF

Mice have been a long-standing model for human biology and disease. Here we characterize, by RNA sequencing, the transcriptional profiles of a large and heterogeneous collection of mouse tissues, augmenting the mouse transcriptome with thousands of novel transcript candidates. Comparison with transcriptome profiles in human cell lines reveals substantial conservation of transcriptional programmes, and uncovers a distinct class of genes with levels of expression that have been constrained early in vertebrate evolution.

View Article and Find Full Text PDF

The laboratory mouse shares the majority of its protein-coding genes with humans, making it the premier model organism in biomedical research, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization.

View Article and Find Full Text PDF

IRBIS is a computational pipeline for detecting conserved complementary regions in unaligned orthologous sequences. Unlike other methods, it follows the "first-fold-then-align" principle in which all possible combinations of complementary k-mers are searched for simultaneous conservation. The novel trimming procedure reduces the size of the search space and improves the performance to the point where large-scale analyses of intra- and intermolecular RNA-RNA interactions become possible.

View Article and Find Full Text PDF

Motivation: Novel technologies brought in unprecedented amounts of high-throughput sequencing data along with great challenges in their analysis and interpretation. The percent-spliced-in (PSI, ) metric estimates the incidence of single-exon-skipping events and can be computed directly by counting reads that align to known or predicted splice junctions. However, the majority of human splicing events are more complex than single-exon skipping.

View Article and Find Full Text PDF

Pre-mRNA structure impacts many cellular processes, including splicing in genes associated with disease. The contemporary paradigm of RNA structure prediction is biased toward secondary structures that occur within short ranges of pre-mRNA, although long-range base-pairings are known to be at least as important. Recently, we developed an efficient method for detecting conserved RNA structures on the genome-wide scale, one that does not require multiple sequence alignments and works equally well for the detection of local and long-range base-pairings.

View Article and Find Full Text PDF

Accurate and efficient recognition of splice sites during pre-mRNA splicing is essential for proper transcriptome expression. Splice site usage can be modulated by secondary structures, but it is unclear if this type of modulation is commonly used or occurs to a significant degree with secondary structures forming over long distances. Using phlyogenetic comparisons of intronic sequences among 12 Drosophila genomes, we elucidated a group of 202 highly conserved pairs of sequences, each at least nine nucleotides long, capable of forming stable stem structures.

View Article and Find Full Text PDF

Cells that produce intrinsic theta oscillations often contain the hyperpolarization-activated current I(h). In this article, we use models and dynamic clamp experiments to investigate the synchronization properties of two such cells (stellate cells of the entorhinal cortex and O-LM cells of the hippocampus) in networks with fast-spiking (FS) interneurons. The model we use for stellate cells and O-LM cells is the same, but the stellate cells are excitatory and the O-LM cells are inhibitory, with inhibitory postsynaptic potential considerably longer than those from FS interneurons.

View Article and Find Full Text PDF

The RNAKinetics server (http://www.ig-msk.ru/RNA/kinetics) is a web interface for the newly developed RNAKinetics software.

View Article and Find Full Text PDF

The oriens-lacunosum moleculare (O-LM) subtype of interneuron is a key component in the formation of the theta rhythm (8-12 Hz) in the hippocampus. It is known that the CA1 region of the hippocampus can produce theta rhythms in vitro with all ionotropic excitation blocked, but the mechanisms by which this rhythmicity happens were previously unknown. Here we present a model suggesting that individual O-LM cells, by themselves, are capable of producing a single-cell theta-frequency firing, but coupled O-LM cells are not capable of producing a coherent population theta.

View Article and Find Full Text PDF

Here we present IRIS, a method for prediction of RNA-RNA interactions that is based on dynamic programming and extends current RNA secondary structure prediction approaches. Using this method we have found a number of interesting refinements to the structures of RNA-RNA complexes that have been studied previously and predicted novel targets for several known regulatory RNAs in E. coli.

View Article and Find Full Text PDF

Recent studies have demonstrated the important enzymatic, structural and regulatory roles of RNA in the cell. Here we present a post-transcriptional regulation system in Escherichia coli that uses RNA to both silence and activate gene expression. We inserted a complementary cis sequence directly upstream of the ribosome binding site in a target gene.

View Article and Find Full Text PDF