Automated financial advising (robo-advising) has become an established practice in wealth management, yet very few studies have looked at the cross-section of the robo-advisors and the factors explaining the persistent variability in their portfolio allocation recommendations. Using a sample of 53 advising platforms from the US and Germany, we show that the underlying algorithms manage to identify different risk profiles, although substantial variability is evident even within the same investor types' groups. The robo-advisor expertise in a particular asset class seems to play a significant role, as does the geographical location, while the breadth of the offered investment choice (number of portfolios) across the robo-advisors under study does not seem to have an effect.
View Article and Find Full Text PDFUsing migration data of a rating agency, this paper attempts to quantify the impact of macroeconomic conditions on credit-rating migrations. The migrations are modeled as a coupled Markov chain, where the macroeconomic factors are represented by unobserved tendency variables. In the simplest case, these binary random variables are static and credit-class-specific.
View Article and Find Full Text PDF