The phytoremediation assisted by arbuscular mycorrhizal fungi (AMF) could constitute an ecological and economic method to restore polycyclic aromatic hydrocarbon (PAH) polluted soils. Unfortunately, little is known about the PAH impact on the beneficial symbiotic AMF. Using radiolabelling experiments, our work aims to understand how benzo[a]pyrene (B[a]P), a representative of high molecular weight PAH, acts on the AMF lipid metabolism.
View Article and Find Full Text PDFArbuscular mycorrhizal (AM) colonization may be one of the means that protects plants and allows them to thrive on polycyclic aromatic hydrocarbon-polluted soils including the carcinogenic benzo(a)pyrene (B[a]P). To understand the mechanisms involved in the AM symbiosis tolerance to B[a]P toxicity, the purpose of this study was to compare the lipid compositions as well as the contents between mycorrhizal and non-mycorrhizal chicory root cultures grown in vitro under B[a]P pollution. Firstly, B[a]P induced significant decreases of the Glomalean lipid markers: C16:1ω5 and 24-methyl/methylene sterol amounts in AM roots indicating a reduced AM fungal development inside the roots.
View Article and Find Full Text PDFThe increasing concentrations impact (0.02, 0.2 and 2 mg L(-1)) of a Sterol Biosynthesis Inhibitor (SBI) fungicide, propiconazole, was evaluated on development and sterol metabolism of two non-target organisms: mycorrhizal or non-mycorrhizal transformed chicory roots and the arbuscular mycorrhizal fungus (AMF) Glomus irregulare using monoxenic cultures.
View Article and Find Full Text PDFThe present work underlined the negative effects of increasing CaCO(3) concentrations (5, 10 and 20 mM) both on the chicory root growth and the arbuscular mycorrhizal fungus (AMF) Glomus irregulare development in monoxenic system. CaCO(3) was found to reduce drastically the main stages of G. irregulare life cycle (spore germination, germinative hyphae elongation, root colonization, extraradical hyphae development and sporulation) but not to inhibit it completely.
View Article and Find Full Text PDFThis study investigated the effects of increasing CaCO(3) concentrations (0, 5, 10, 20 mM) on arbuscular mycorrhizal (AM) symbiosis establishment as well as on chicory root growth and mineral nutrient uptake in a monoxenic system. Although CaCO(3) treatments significantly decreased root growth and altered the symbiosis-related development steps of the AM fungus Rhizophagus irregularis (germination, germination hypha elongation, root colonization rate, extraradical hyphal development, sporulation), the fungus was able to completely fulfill its life cycle. Even when root growth decreased more drastically in mycorrhizal roots than in non-mycorrhizal ones in the presence of high CaCO(3) levels, the AM symbiosis was found to be beneficial for root mineral uptake.
View Article and Find Full Text PDFMost polycyclic aromatic hydrocarbons (PAHs) are ubiquitous natural and/or anthropogenic pollutants that have adverse effects on the human health and the environment. Little is known about their potential effects on arbuscular mycorrhizal fungi (AMF). Thus, using monoxenic cultures, this work aims to study the impact of increasing concentrations (140 and 280 μM) of two PAHs [anthracene and benzo[a]pyrene (B[a]P)] on Glomus irregulare lipid content in relation with its development.
View Article and Find Full Text PDFEnviron Pollut
June 2011
Due to anthropogenic activities, large extends of soils are highly contaminated by Metal Trace Element (MTE). Aided phytostabilisation aims to establish a vegetation cover in order to promote in situ immobilisation of trace elements by combining the use of metal-tolerant plants and inexpensive mineral or organic soil amendments. Eight years after Coal Fly Ash (CFA) soil amendment, MTE bioavailability and uptake by two plants, Lolium perenne and Trifolium repens, were evaluated, as some biological markers reflecting physiological stress.
View Article and Find Full Text PDFAmong chemicals that are widely spread both in terrestrial and aquatic ecosystems, benzo[a]pyrene is a major source of concern. However, little is known about its adverse effects on plants, as well as about the role of mycorrhization in protection of plant grown in benzo[a]pyrene-polluted conditions. Hence, to contribute to a better understanding of the adverse effects of polycyclic aromatic hydrocarbons on the partners of mycorrhizal symbiotic association, benzo[a]pyrene-induced oxidative stress was studied in transformed Cichorium intybus roots grown in vitro and colonized or not by Glomus intraradices.
View Article and Find Full Text PDFThe present work examined the oxidative stress induced by different concentrations (0.02 and 0.2 mg l-1) of two sterol biosynthesis inhibitor fungicides (fenpropimorph and fenhexamid) in non-target chicory root colonised or not by Glomus intraradices in a monoxenic system.
View Article and Find Full Text PDF