Due to its high modification content tRNAs are notoriously hard to quantify by reverse transcription and RNAseq. Bypassing numerous biases resulting from concatenation of enzymatic treatments, we here report a hybrid approach that harnesses the advantages of hybridization-based and deep sequencing-based approaches. The method renders obsolete any RNAseq related workarounds and correction factors that affect accuracy, sensitivity, and turnaround time.
View Article and Find Full Text PDFDihydrouridine (D), a prevalent and evolutionarily conserved base in the transcriptome, primarily resides in tRNAs and, to a lesser extent, in mRNAs. Notably, this modification is found at position 2449 in the 23S rRNA, strategically positioned near the ribosome's peptidyl transferase site. Despite the prior identification, in genome, of three dihydrouridine synthases (DUS), a set of NADPH and FMN-dependent enzymes known for introducing D in tRNAs and mRNAs, characterization of the enzyme responsible for D2449 deposition has remained elusive.
View Article and Find Full Text PDFDihydrouridine (D) is a common modified base found predominantly in transfer RNA (tRNA). Despite its prevalence, the mechanisms underlying dihydrouridine biosynthesis, particularly in prokaryotes, have remained elusive. Here, we conducted a comprehensive investigation into D biosynthesis in Bacillus subtilis through a combination of genetic, biochemical, and epitranscriptomic approaches.
View Article and Find Full Text PDFAdrenodoxin reductase (AdxR) plays a pivotal role in electron transfer, shuttling electrons between NADPH and iron/sulfur adrenodoxin proteins in mitochondria. This electron transport system is essential for P450 enzymes involved in various endogenous biomolecules biosynthesis. Here, we present an in-depth examination of the kinetics governing the reduction of human AdxR by NADH or NADPH.
View Article and Find Full Text PDFRNA modifications found in most RNAs, particularly in tRNAs and rRNAs, reveal an abundance of chemical alterations of nucleotides. Over 150 distinct RNA modifications are known, emphasizing a remarkable diversity of chemical moieties in RNA molecules. These modifications play pivotal roles in RNA maturation, structural integrity, and the fidelity and efficiency of translation processes.
View Article and Find Full Text PDFDihydrouridine (D) is an abundant modified base found in the tRNAs of most living organisms and was recently detected in eukaryotic mRNAs. This base confers significant conformational plasticity to RNA molecules. The dihydrouridine biosynthetic reaction is catalyzed by a large family of flavoenzymes, the dihydrouridine synthases (Dus).
View Article and Find Full Text PDFUntil recently, post-transcriptional modifications of RNA were largely restricted to noncoding RNA species. However, this belief seems to have quickly dissipated with the growing number of new modifications found in mRNA that were originally thought to be primarily tRNA-specific, such as dihydrouridine. Recently, transcriptomic profiling, metabolic labeling, and proteomics have identified unexpected dihydrouridylation of mRNAs, greatly expanding the catalog of novel mRNA modifications.
View Article and Find Full Text PDFThymidylate is a vital DNA precursor synthesized by thymidylate synthases. ThyX is a flavin-dependent thymidylate synthase found in several human pathogens and absent in humans, which makes it a potential target for antimicrobial drugs. This enzyme methylates the 2'-deoxyuridine 5'-monophosphate (dUMP) to 2'-deoxythymidine 5'-monophosphate (dTMP) using a reduced flavin adenine dinucleotide (FADH) as prosthetic group and (6)-,-methylene-5,6,7,8-tetrahydrofolate (CHTHF) as a methylene donor.
View Article and Find Full Text PDFFolate enzyme cofactors and their derivatives have the unique ability to provide a single carbon unit at different oxidation levels for the de novo synthesis of amino-acids, purines, or thymidylate, an essential DNA nucleotide. How these cofactors mediate methylene transfer is not fully settled yet, particularly with regard to how the methylene is transferred to the methylene acceptor. Here, we uncovered that the bacterial thymidylate synthase ThyX, which relies on both folate and flavin for activity, can also use a formaldehyde-shunt to directly synthesize thymidylate.
View Article and Find Full Text PDFDihydrouridine (D) is a tRNA-modified base conserved throughout all kingdoms of life and assuming an important structural role. The conserved dihydrouridine synthases (Dus) carries out D-synthesis. DusA, DusB and DusC are bacterial members, and their substrate specificity has been determined in .
View Article and Find Full Text PDFTo probe intermediate states during unfolding and oligomerization of proteins remains a major challenge. High pressure (HP) is a powerful tool for studying these problems, revealing subtle structural changes in proteins not accessible by other means of denaturation. Bovine β-lactoglobulin (BLG), the main whey protein, has a strong propensity to bind various bioactive molecules such as retinol and resveratrol, two ligands with different affinity and binding sites.
View Article and Find Full Text PDFMiaE (2-methylthio-N6-isopentenyl-adenosine37-tRNA monooxygenase) is a unique non-heme diiron enzyme that catalyzes the O2-dependent post-transcriptional allylic hydroxylation of a hypermodified nucleotide 2-methylthio-N6-isopentenyl-adenosine (ms2i6A37) at position 37 of selected tRNA molecules to produce 2-methylthio-N6-4-hydroxyisopentenyl-adenosine (ms2io6A37). Here, we report the in vivo activity, biochemical, spectroscopic characterization and X-ray crystal structure of MiaE from Pseudomonas putida. The investigation demonstrates that the putative pp-2188 gene encodes a MiaE enzyme.
View Article and Find Full Text PDFThe C5-methylation of uracil to form 5-methyluracil (mU) is a ubiquitous base modification of nucleic acids. Four enzyme families have converged to catalyze this methylation using different chemical solutions. Here, we investigate the evolution of 5-methyluracil synthase families in , a class of bacteria that has undergone extensive genome erosion.
View Article and Find Full Text PDFThe double-stranded RNA-binding domain (dsRBD) is a broadly distributed domain among RNA-maturing enzymes. Although this domain recognizes dsRNA's structures via a conserved canonical structure adopting an α-βββ-α topology, several dsRBDs can accommodate discrete structural extensions expanding further their functional repertoire. How these structural elements engage cooperative communications with the canonical structure and how they contribute to the dsRBD's overall folding are poorly understood.
View Article and Find Full Text PDFFlavoproteins often stabilize their flavin coenzyme by stacking interactions involving the isoalloxazine moiety of the flavin and an aromatic residue from the apoprotein. The bacterial FAD and folate-dependent tRNA methyltransferase TrmFO has the unique property of stabilizing its FAD coenzyme by an unusual H-bond-assisted π-π stacking interaction, involving a conserved tyrosine (Y346 in Bacillus subtilis TrmFO, BsTrmFO), the isoalloxazine of FAD and the backbone of a catalytic cysteine (C53). Here, the interaction between FAD and Y346 has been investigated by measuring the photoinduced flavin dynamics of BsTrmFO in the wild-type (WT) protein, C53A and several Y346 mutants by ultrafast transient absorption spectroscopy.
View Article and Find Full Text PDFDouble stranded RNA-binding domain (dsRBD) is a ubiquitous domain specialized in the recognition of double-stranded RNAs (dsRNAs). Present in many proteins and enzymes involved in various functional roles of RNA metabolism, including RNA splicing, editing, and transport, dsRBD generally binds to RNAs that lack complex structures. However, this belief has recently been challenged by the discovery of a dsRBD serving as a major tRNA binding module for human dihydrouridine synthase 2 (hDus2), a flavoenzyme that catalyzes synthesis of dihydrouridine within the complex elbow structure of tRNA.
View Article and Find Full Text PDFProton conductive materials are of significant importance and highly desired for clean energy-related applications. Discovery of practical metal-organic frameworks (MOFs) with high proton conduction remains a challenge due to the use of toxic chemicals, inconvenient ligand preparation and complication of production at scale for the state-of-the-art candidates. Herein, we report a zirconium-MOF, MIP-202(Zr), constructed from natural α-amino acid showing a high and steady proton conductivity of 0.
View Article and Find Full Text PDFDihydrouridine (D) is an abundant modified base of tRNA found in the majority of living organisms. This base is synthesized via an NADPH-dependent reduction of specific uridines by the dihydrouridine synthases (Dus), a large family of flavoenzymes comprising eight subfamilies. Almost all of these enzymes function with only two conserved domains, an N-terminal catalytic domain (TBD) adopting a TIM barrel fold and a unique C-terminal helical domain (HD) devoted to tRNA recognition, except for the animal U20-specific Dus2 enzyme.
View Article and Find Full Text PDFCylindrospermopsin, a cytotoxin from cyanobacteria, is biosynthesized by a complex pathway, which involves CyrI, an iron and 2-oxoglutarate dependent hydroxylase that transforms 7-deoxy-cylindrospermopsin into cylindrospermopsin and its epimer, 7-epi-cylindrospermopsin, in the last step. The activity of CyrI from Oscillatoria sp. PCC 7926 depends on Fe(II) (K = 2.
View Article and Find Full Text PDFPost-transcriptional base modifications are important to the maturation process of transfer RNAs (tRNAs). Certain modifications are abundant and present at several positions in tRNA as for example the dihydrouridine, a modified base found in the three domains of life. Even though the function of dihydrourine is not well understood, its high content in tRNAs from psychrophilic bacteria or cancer cells obviously emphasizes a central role in cell adaptation.
View Article and Find Full Text PDFUnderstanding the mechanisms of protein oligomerization and aggregation is a major concern for biotechnology and medical purposes. However, significant challenges remain in determining the mechanism of formation of these superstructures and the environmental factors that can precisely modulate them. Notably the role that a functional ligand plays in the process of protein aggregation is largely unexplored.
View Article and Find Full Text PDFTo facilitate production of functional enzymes and to study their mechanisms, especially in the complex cases of coenzyme-dependent systems, activation of an inactive apoenzyme preparation with a catalytically competent coenzyme intermediate is an attractive strategy. This is illustrated with the simple chemical synthesis of a flavin-methylene iminium compound previously proposed as a key intermediate in the catalytic cycle of several important flavoenzymes involved in nucleic acid metabolism. Reconstitution of both flavin-dependent RNA methyltransferase and thymidylate synthase apoproteins with this synthetic compound led to active enzymes for the C5-uracil methylation within their respective transfer RNA and dUMP substrate.
View Article and Find Full Text PDFRNAs molecules fulfill key roles in the expression and regulation of the genetic information stored within the DNA chromosomes. In addition to the four canonical bases, U, C, A and G, RNAs harbor various chemically modified derivatives which are generated post-transcriptionally by specific enzymes acting directly at the polymer level. More than one hundred naturally occurring modified nucleosides have been identified to date, the largest number of which is found in tRNAs and rRNA.
View Article and Find Full Text PDFUbiquinone (UQ), also referred to as coenzyme Q, is a widespread lipophilic molecule in both prokaryotes and eukaryotes in which it primarily acts as an electron carrier. Eleven proteins are known to participate in UQ biosynthesis in , and we recently demonstrated that UQ biosynthesis requires additional, nonenzymatic factors, some of which are still unknown. Here, we report on the identification of a bacterial gene, , which is required for efficient UQ biosynthesis, and which we have renamed Using several methods, we demonstrated that the UbiK protein forms a complex with the C-terminal part of UbiJ, another UQ biogenesis factor we previously identified.
View Article and Find Full Text PDF