Considering the environmental impact and health risks caused by oily wastewater in the petrochemical industry, it is crucial to develop more efficient separation techniques than traditional methods, such as membrane separation, for treating stable emulsions enriched with natural surfactants. This study investigated the preparation of dense cellulose acetate membranes from a low-cost biomass precursor () and their modification with graphene oxide (GO) and TiO nanoparticles, aiming to obtain a polymeric nanocomposite with good flux characteristics and selectivity for the treatment of oil/water emulsions. The materials obtained were characterized using techniques such as X-ray diffraction, nuclear magnetic resonance spectroscopy, infrared absorption spectroscopy, along with optical and scanning electron microscopy, among others.
View Article and Find Full Text PDFThe hydrothermal synthesis of nano-faujasite has been successfully performed and the effects of some crystallization parameters were investigated, along with the use of this material as a heavy-metal ion adsorbent. X-ray diffraction patterns have shown that the structure of the nano-faujasite is strongly dependent on both the crystallization time and the alkalinity of the synthesis medium. According to N physisorption, X-ray fluorescence, SEM/EDS, and solid state Si and Al NMR data, the produced nano-faujasite consists of a solid with low molar Si/Al ratio (1.
View Article and Find Full Text PDF