Publications by authors named "Djamel Grid"

Autosomal recessive Charcot-Marie-Tooth diseases, relatively common in Algeria due to high prevalence of consanguineous marriages, are clinically and genetically heterogeneous. We report on two consanguineous families with demyelinating autosomal recessive Charcot-Marie-Tooth disease (CMT4) associated with novel homozygous mutations in the MTMR2 gene, c.331dupA (p.

View Article and Find Full Text PDF

Thirty-four different loci for hereditary spastic paraplegias have been mapped, and 16 responsible genes have been identified. Autosomal recessive forms of spastic paraplegias usually have clinically complex phenotypes but the SPG5, SPG24 and SPG28 loci are considered to be associated with 'pure' forms of the disease. Very recently, five mutations in the CYP7B1 gene, encoding a cytochrome P450 oxysterol 7-alpha hydroxylase and expressed in brain and liver, have been found in SPG5 families.

View Article and Find Full Text PDF

Giant axonal neuropathy (GAN), a severe childhood disorder affecting both the peripheral nerves and the central nervous system, is due to mutations in the GAN gene encoding gigaxonin, a protein implicated in the cytoskeletal functions and dynamics. In the majority of the GAN series reported to date, patients had the classical clinical phenotype characterized by a severe axonal neuropathy with kinky hair and early onset CNS involvement including cerebellar and pyramidal signs. We present 12 patients (6 families) with GAN mutations and different clinical phenotypes.

View Article and Find Full Text PDF

Hereditary spastic paraplegia (HSP) type 15 is an autosomal recessive (AR) form of complicated HSP mainly characterized by slowly progressive spastic paraplegia, mental retardation, intellectual deterioration, maculopathy, distal amyotrophy, and mild cerebellar signs that has been associated with the Kjellin syndrome. The locus for this form of HSP, designated SPG15, was mapped to an interval of 19 cM on chromosome 14q22-q24 in two Irish families. We performed a clinical-genetic study of this form of HSP on 147 individuals (64 of whom were affected) from 20 families with AR-HSP.

View Article and Find Full Text PDF

Charcot-Marie-Tooth (CMT) disorders are a clinically and genetically heterogeneous group of hereditary motor and sensory neuropathies characterized by muscle weakness and wasting, foot and hand deformities, and electrophysiological changes. The CMT4H subtype is an autosomal recessive demyelinating form of CMT that was recently mapped to a 15.8-Mb region at chromosome 12p11.

View Article and Find Full Text PDF

Thirty-three different loci for hereditary spastic paraplegias (HSP) have been mapped, and 15 responsible genes have been identified. Autosomal recessive spastic paraplegias (ARHSPs) usually have clinically complex phenotypes but the SPG5, SPG24, and SPG28 loci are considered to be associated with pure forms of the disease. We performed a genome-wide scan in a large French family.

View Article and Find Full Text PDF

Autosomal recessive hereditary spastic paraplegia (ARHSP) with thin corpus callosum (TCC) is a common and clinically distinct form of familial spastic paraplegia that is linked to the SPG11 locus on chromosome 15 in most affected families. We analyzed 12 ARHSP-TCC families, refined the SPG11 candidate interval and identified ten mutations in a previously unidentified gene expressed ubiquitously in the nervous system but most prominently in the cerebellum, cerebral cortex, hippocampus and pineal gland. The mutations were either nonsense or insertions and deletions leading to a frameshift, suggesting a loss-of-function mechanism.

View Article and Find Full Text PDF

We report two sporadic patients of CMT disease in different consanguineous families. The electrophysiological examination led to the diagnosis of a severe demyelinating neuropathy. The nerve biopsies exhibited numerous outfoldings of the myelin sheaths and onion-bulb proliferations.

View Article and Find Full Text PDF

In some countries with a high prevalence of consanguineous mariage, autosomal recessive inheritance probably accounts for the vast majority of all forms of CMT. Like dominant forms, autosomal recessive forms are generally subdivided into demyelinating forms (autosomal recessive CMT1: AR-CMT1 or CMT4) and axonal forms (AR-CMT2). Genetic analysis of large families with recessive transmission has identified several novel CMT-related genes (GDAP1, MTMR2, MTMR13, KIAA1985, NDGR1, periaxin and lamin).

View Article and Find Full Text PDF

In certain countries around the Mediterranean basin such as Algeria, which have a high prevalence of consanguineous marriages, autosomal-recessive (AR) inheritance may account for more than 50% of all forms of Charcot-Marie-Tooth (CMT) disease. Like with the dominant forms, it is usual to differentiate the demyelinating forms (CMT 4 corresponding to autosomal-recessive CMT 1 [AR-CMT 1] from the axonal forms [AR-CMT 2]). Genetic analysis of large families with recessive transmission has uncovered novel CMT genotypes (genes: GDAP 1, MTMR 2, MTMR 13, KIAA1985, NDGR1, periaxi, lamin).

View Article and Find Full Text PDF
Article Synopsis
  • Unverricht-Lundborg disease (ULD) is a progressive myoclonus epilepsy primarily affecting populations in Finland and North Africa, linked to a repeat expansion in the CSTB gene.
  • A study analyzing 95 ULD chromosomes identified a founder effect in North African patients who predominantly shared a specific haplotype (A1), while West European Caucasians showed greater genetic diversity.
  • The research suggests that a common ancestor for these haplotypes may have existed around 2,500 years ago, indicating there are only a few founder mutations responsible for ULD.
View Article and Find Full Text PDF

The Charcot-Marie-Tooth (CMT) disorders comprise a group of clinically and genetically heterogeneous hereditary motor and sensory neuropathies, which are mainly characterized by muscle weakness and wasting, foot deformities, and electrophysiological, as well as histological, changes. A subtype, CMT2, is defined by a slight or absent reduction of nerve-conduction velocities together with the loss of large myelinated fibers and axonal degeneration. CMT2 phenotypes are also characterized by a large genetic heterogeneity, although only two genes---NF-L and KIF1Bbeta---have been identified to date.

View Article and Find Full Text PDF