Publications by authors named "Djahida Lerari"

Currently, food packaging is facing a critical transition period and a major challenge: it must preserve the food products' quality and, at the same time, it must meet the current requirements of the circular economy and the fundamental principles of packaging materials eco-design. Our research presents the development of eco-friendly packaging films based on cladodes (OFIC) as renewable resources. OFIC powder (OFICP)-agar, OFICP-agar-gum arabic (GA), and OFICP-agar-xanthan (XG) blend films were eco-friendlily prepared by a solution casting method.

View Article and Find Full Text PDF

Water pollution caused by dyes poses a significant threat to life on earth. Poly(acrylamide-co-acrylic acid) hydrogels are widely used to treat wastewater from various pollutants. This study aims to examine the removal of malachite green (MG), a harmful and persistent dye that could cause extensive environmental damage, from an aqueous solution by adjusting the initial concentration of acrylamide (AM) and the degree of copolymer crosslinking.

View Article and Find Full Text PDF

The effects of cysteine (Cys) and l-methionine (l-Met) on copper corrosion inhibition were examined in 1 M HNO solution for short and long exposure times. Potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) were used. The EIS determined the potential for zero charges of copper (PZC) in the inhibitor solution.

View Article and Find Full Text PDF

The discharge of untreated wastewater, often contaminated by harmful substances, such as industrially used dyes, can provoke environmental and health risks. Among various techniques, the adsorption of dyes, using three-dimensional (3D) networks consisting of hydrophilic polymers (hydrogels), represents a low-cost, clean, and efficient remediation method. Three industrially used dyes, Methylene Blue, Eosin, and Rose Bengal, were selected as models of pollutants.

View Article and Find Full Text PDF

In this work, the synthesis of pure and (Ce, Ag) co-doped ZnO was successfully accomplished using a solvothermal process. The synthesized samples were characterized by ultraviolet-visible spectroscopy, X-ray diffraction, and scanning electron microscopy. The photocatalytic ability of the samples is estimated through degradation of tartrazine in aqueous solution under photocatalytic conditions.

View Article and Find Full Text PDF

A novel bis-[1-(2-[(2-hydroxynaphthalen-1-yl) methylidene]amino}ethyl)-1-ethyl-3-phenylthiourea] Schiff base (L) and its binuclear palladium and ruthenium complexes have been prepared and characterized by ESI-MS, elemental analysis, NMR (H NMR, C NMR, COSY, NEOSY and HSQC), FT-IR, ATR, UV-Visible spectra, TGA measurements, conductivity and cyclic voltammetry. The experimental results and the molecular parameters calculated using DFT method revealed a square planar geometry around Pd and octahedral geometry around ruthenium metal. The antibacterial activity of the ligand L and its complexes was evaluated against different human bacteria.

View Article and Find Full Text PDF

All-biobased and biodegradable nanocomposites consisting of poly(l-lactide) (PLLA) and starch nanoplatelets (SNPs) were prepared via a new strategy involving supramolecular chemistry, i.e., stereocomplexation and hydrogen-bonding interactions.

View Article and Find Full Text PDF

Carboxymethyl cellulose hydrogels beads were synthesized by ionotropic gelation in Al solutions with or without sodium n-dodecyl sulfate (SDS) surfactant as a pore-forming micelle templating and NaCl as porogen agent. FTIR spectroscopy and EDX analysis evidenced the formation of hydrogels. The morphology observed by Scanning Electron Microscopy (SEM) showed rough porous surfaces.

View Article and Find Full Text PDF