The efficient removal of uranium (U(Ⅵ)) from nuclear wastewater presents a significant challenge due to the high concentrations of uranium and various interfering ions. In this study, we developed and used metal-organic framework hydrogel (MOFH) as a highly efficient adsorbent for uranium removal. The MOFH, synthesized with ferrocyanides and functional groups (Fe(Ⅱ)-CN-Fe(Ⅲ), OH, -COOH, and -NH), exhibited good chemical stability, large separation capacity, and high selectivity.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2024
Polluted environments often contain large amounts of toxic metals, such as cadmium, which pose a major threat to ecosystems and public health. Contamination by cadmium and its compounds is often observed in areas surrounding zinc mining sites and electroplating factories, and the control of cadmium pollution is essential for environmental safety and health. In this study, a highly efficient and straightforward separation strategy for KFe(CN)@FeO nanocomposites is successfully developed to capture the Cd ions in the water environment.
View Article and Find Full Text PDFUranium [U(VI)] mining activity resulted in the discharge of uranium containing acid wastewater. It is necessary for immobilizing the uranium from wastewater to avoid its environmental pollution. In this work, a novel hydrothermal mineralization strategy is proposed for uranium stabilization.
View Article and Find Full Text PDFA sensitive and biocompatible N-rich probe for rapid visual uranium detection was constructed by grafting two trianiline groups to 2,6-bis(aminomethyl)pyridine. Possessing excellent aggregation-induced emission (AIE) property and the advantages to form multidentate chelate with U selectively, the probe has been applied successfully to visualize uranium in complex environmental water samples and living cells, demonstrating outstanding anti-interference ability against large equivalent of different ions over a wide effective pH range. A large linear range (1.
View Article and Find Full Text PDFThe contamination of creek sediments near industrially nuclear dominated site presents significant environmental challenges, particularly in identifying and quantifying potentially toxic metal (loid)s (PTMs). This study aims to measure the extent of contamination and apportion related sources for nine PTMs in alpine creek sediments near a typical uranium tailing dam from China, including strontium (Sr), rubidium (Rb), manganese (Mn), lithium (Li), nickel (Ni), copper (Cu), vanadium (V), cadmium (Cd), zinc (Zn), using multivariate statistical approach and Sr isotopic compositions. The results show varying degrees of contamination in the sediments for some PTMs, i.
View Article and Find Full Text PDFThe uranium (U) containing leachate from uranium tailings dam into the natural settings, may greatly affect the downstream environment. To reveal such relationship between uranium contamination and microbial communities in the most affected downstream environment under drought stress, a 180 cm downstream artificial reservoir depth sediment profile was collected, and the microbial communities and related genes were analyzed by 16S rDNA and metagenomics. Besides, the sequential extraction scheme was employed to shed light on the distinct role of U geochemical speciations in shaping microbial community structures.
View Article and Find Full Text PDFThe extraction and utilization of uranium (U) ores have led to the release of significant amounts of potentially toxic metal(loid)s (PTMs) into the environment, constituting a grave threat to the ecosystem. However, research on the distribution and migration mechanism of U, chromium (Cr), and their accompanying PTMs in soil-plant system around U hydrometallurgical area remains insufficient and poorly understood. Herein, the distribution, migration, and risk level of PTMs were evaluated in soil and plant samples around U hydrometallurgical area, Northern Guangdong, China.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2024
Mg and N co-doped carbon quantum dots (Mg-N-CQDs) were synthesized and applied to alleviate oxygen toxicity by UV-B radiation and enhance antioxidative responses to wheat seedlings. It showed that Mg-N-CQDs pre-treatment attenuated the UV-B stress effects in a dose-dependent manner, as indicated by enhancing the characteristics of seed germination and early seedling growth parameters. Meanwhile, Mg-N-CQDs can be applied in plant nutrient solutions with nitrogen, phosphorus, potassium, and other fertilizers to promote the growth of seedlings.
View Article and Find Full Text PDFJ Environ Manage
January 2024
U(VI)-containing acidic wastewater produced from uranium mining sites is an environmental hazard. Highly efficient capture of U(VI) from such wastewater is of great significance. In this study, a mesoporous core-shell material (i.
View Article and Find Full Text PDFUranium contamination and remediation is a very important environmental research area. Removing radioactive and toxic uranium from contaminated media requires fundamental knowledge of targets and materials. To explore the-State-of-the-Art in uranium contamination control, we employed a statistical tool called CiteSpace to visualize and statistically analyze 4203 peer-reviewed papers on uranium treatment published between 2008 and 2022.
View Article and Find Full Text PDFBatch and column leaching tests were used to study thallium's release and migration behaviour and evaluate its potential toxicity risks in soil. The results indicated that leaching concentrations of Tl using TCLP and SWLP were much higher than the threshold, indicating a high risk of thallium pollution in the soil. Furthermore, the intermittent leaching rate of Tl by Ca and HCl reached its maximum value, demonstrating the easy release of Tl.
View Article and Find Full Text PDFUranium-containing wastewater is a common by-product of uranium mining. Phosphate and phosphate minerals can interact with uranyl ions [U(VI)], impeding the migration of these ions by forming relatively stable uranium-containing crystalline phase(s). In this study, hydroxyapatite microtubes (HAP-T) were fabricated to sequester uranyl ions from simulated radioactive wastewater.
View Article and Find Full Text PDFA kind of high yield and recyclable Cobalt-Carbon composite (ZnCo/PC) was prepared by carbothermal reduction process, in which the cobalt acetate and zinc acetate were considered as Zn and Co precursors, and the polyester waste was evolved as the carbon precursor. The morphology, structure and composition of the composite were characterized using scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Results showed that evaporation of zinc contributed to the formation of porous carbon structure, and the Co nanoparticles were wrapped and protected by the porous carbon matrix.
View Article and Find Full Text PDFIn a Co-HAP/PMS system, catalytic degradation process of RhB was accompanied by the gradual leaching of cobalt ion. The results of additional experiments showed that leached cobalt ion indeed contributed to active PMS for RhB degradation, which was not addressed in the previous study. The finding of the contribution from leached cobalt ion to PMS activation was reported due to the valuable comments of Zuo et al.
View Article and Find Full Text PDFIn consideration of the severe hazards of radioactive uranium pollution and the growing demand of uranium resources, the novel sensor/adsorbent composite was creatively developed to integrate the dual functions for on-site detection of uranium contamination and efficient recovery of uranium resources. By hybridizing the luminescent 3D terbium (III) metal-organic framework (Tb-MOF) with sodium alginate (SA) gel using terbium (III) as cross-linker, the Tb-MOF/Tb-AG was fabricated with multi-luminescence centers and sufficient binding sites for uranium. Notably, the ultra-high sensitivity with detection limit as low as 1.
View Article and Find Full Text PDFThe widespread adoption of nuclear energy has increased the amount of radioactive cesium (Cs) that is discharged into waste streams, which can have environmental risks. In this paper, we provide a comprehensive summary of current advances in aqueous Cs removal by employing a bibliometric analysis. We collected 1580 articles related to aqueous Cs treatment that were published on the Web of Science database between 2012 and 2022.
View Article and Find Full Text PDFPyrite is a typical sulfide mineral which contains various potentially toxic metal(loid)s (PTMs). The pyrite smelting and subsequent industrial utilization activities usually release numerous amounts of PTMs into nearby ecosystem, which may be enriched in the nearby farmland soils and crops, leading to hidden but irreversible harm to human health via the food chain. Herein, the distribution pattern, source apportionment, and potential health risks of Pb, Zn, Cu, Cd and multiple seldom monitored PTMs (Ag, Bi, Sb, Sr, Th, U, W, and V) in the paddy soils and different organs of the rice plants from ten various sites in a typical industrial zone were investigated, where pyrite ores were used for the production of sulfuric acid and subsequent cement over several decades.
View Article and Find Full Text PDFCesium (Cs) is a byproduct of nuclear bombs, nuclear weapons testing, and nuclear fission in nuclear reactors. Cs can enter the human body through food or air and cause lasting damage. Highly efficient and selective removal of Cs from low-level radioactive effluents (LLREs), which contain many radionuclides and dissolved heavy metal species, is imperative for minimizing LLRE volume, and facilitating their final disposal.
View Article and Find Full Text PDFEnviron Res
September 2022
As a type of useful solid waste, red mud (RM) should be reused to achieve waste-to-resource strategies. Additionally, the fast development of nuclear industry requires effective and reliable materials for treating uranium (U)-containing wastewater. This study attempted to remove uranyl ions [U(VI)] from mimic radioactive wastewater by various RM particles with different size fractions (e.
View Article and Find Full Text PDFThe migration and transformation of uranyl [U (Ⅵ)] ions in the environment are quite dependent on the geological condition in particular with the site enriched in Fe. In this study, the interfacial interaction of U (Ⅵ) ions with maghemite (γ-FeO) particles was studied and the interaction mechanism was explored as well. Batch experiments confirm that γ-FeO can effectively remove U (Ⅵ) from an aqueous solution within a relatively short reaction time (R% > 92.
View Article and Find Full Text PDFUranium (U)-containing wastewater poses serious pressure to human health and environmental safety. The treatment of U-bearing wastewater using green and facilely fabricated materials is considered a promising alternative. Herein, the raw and modified aerial roots of Ficus microcarpa (RARF and MARF, respectively) were prepared and applied to the treatment of synthesized U-containing wastewater.
View Article and Find Full Text PDFUranium (U) immobilization from wastewater by zero valent iron (ZVI) was widely concerned through reduction and surface adsorption. Releasing of U due to re-oxidation of U(IV) into U(VI) limited the application of ZVI in U decontamination. In this work, a kind of biochar supported nano zero valent iron (Fe/BC(900)) was obtained by carbothermal reduction of starch mixed with ferric nitrate at 900 °C.
View Article and Find Full Text PDFHeterocyclic aromatic compounds such as malachite green can cause immense harm to the environment and mankind because of their toxic bio-accumulation and insufficient biodegradation. ZnFeO/TiO (ZF-T) has attracted attentions as a visible-light-driven catalyst because it can break and mineralize benzene through photolysis. Compared with TiO, which photodegrades only 53.
View Article and Find Full Text PDFHalloysite nanotubes (HNTs) are considered structurally promising adsorption materials, but their application is limited due to their poor native adsorption properties. Improving the adsorption capacity of HNTs for radioactive U(VI) is of great significance. By controlling the mass ratio of HNTs and dopamine (DA), composite adsorbents (HNTs@PDA) with different polydopamine (PDA) layer thicknesses were synthesized.
View Article and Find Full Text PDF