Publications by authors named "Diyendo Massilani"

Salivary and pancreatic amylase are encoded by AMY1 and AMY2, respectively, which are located within a single genomic locus that has undergone substantial structural variation, resulting in varying gene copy numbers across species. Using optical genome mapping and long-read sequencing, Yilmaz, Karageorgiou, Kim, et al. achieved nucleotide-level resolution of this locus across different human populations, offering new insights into how copy number variation contributes to human adaptation.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are studying DNA in Africa to learn more about the continent’s history, but many African scientists face challenges and are often left out of these discussions.
  • A workshop called DNAirobi was held in May 2023 to help make sure African voices are included in research about African people and their past.
  • The goal is to create a better system for DNA research in Africa over the next ten years by improving communication, building partnerships, and making science more inclusive.
View Article and Find Full Text PDF

The development of next-generation sequencing has led to a breakthrough in the analysis of ancient genomes, and the subsequent genomic analyses of ancient human skeletal remains have revolutionized our understanding of human evolution. This research led to the discovery of a new hominin lineage, and demonstrated multiple admixture events with more distantly related archaic human populations such as Neandertals and Denisovans over the last 100,000 years. Moreover, it has also yielded novel insights into the evolution of ancient pathogens.

View Article and Find Full Text PDF

Ancient DNA recovered from Pleistocene sediments represents a rich resource for the study of past hominin and environmental diversity. However, little is known about how DNA is preserved in sediments and the extent to which it may be translocated between archaeological strata. Here, we investigate DNA preservation in 47 blocks of resin-impregnated archaeological sediment collected over the last four decades for micromorphological analyses at 13 prehistoric sites in Europe, Asia, Africa, and North America and show that such blocks can preserve DNA of hominins and other mammals.

View Article and Find Full Text PDF

Since the initial identification of the Denisovans a decade ago, only a handful of their physical remains have been discovered. Here we analysed ~3,800 non-diagnostic bone fragments using collagen peptide mass fingerprinting to locate new hominin remains from Denisova Cave (Siberia, Russia). We identified five new hominin bones, four of which contained sufficient DNA for mitochondrial analysis.

View Article and Find Full Text PDF

The origin and evolution of hominin mortuary practices are topics of intense interest and debate. Human burials dated to the Middle Stone Age (MSA) are exceedingly rare in Africa and unknown in East Africa. Here we describe the partial skeleton of a roughly 2.

View Article and Find Full Text PDF

A late Middle Pleistocene mandible from Baishiya Karst Cave (BKC) on the Tibetan Plateau has been inferred to be from a Denisovan, an Asian hominin related to Neanderthals, on the basis of an amino acid substitution in its collagen. Here we describe the stratigraphy, chronology, and mitochondrial DNA extracted from the sediments in BKC. We recover Denisovan mitochondrial DNA from sediments deposited ~100 thousand and ~60 thousand years ago (ka) and possibly as recently as ~45 ka.

View Article and Find Full Text PDF

We present analyses of the genome of a ~34,000-year-old hominin skull cap discovered in the Salkhit Valley in northeastern Mongolia. We show that this individual was a female member of a modern human population that, following the split between East and West Eurasians, experienced substantial gene flow from West Eurasians. Both she and a 40,000-year-old individual from Tianyuan outside Beijing carried genomic segments of Denisovan ancestry.

View Article and Find Full Text PDF

A skullcap found in the Salkhit Valley in northeast Mongolia is, to our knowledge, the only Pleistocene hominin fossil found in the country. It was initially described as an individual with possible archaic affinities, but its ancestry has been debated since the discovery. Here, we determine the age of the Salkhit skull by compound-specific radiocarbon dating of hydroxyproline to 34,950-33,900 Cal.

View Article and Find Full Text PDF

Background: Climatic and environmental fluctuations as well as anthropogenic pressure have led to the extinction of much of Europe's megafauna. The European bison or wisent (Bison bonasus), one of the last wild European large mammals, narrowly escaped extinction at the onset of the 20th century owing to hunting and habitat fragmentation. Little is known, however, about its origin, evolutionary history and population dynamics during the Pleistocene.

View Article and Find Full Text PDF

The development of next-generation sequencing has led to a breakthrough in the analysis of ancient genomes, and the subsequent genomic analyses of the skeletal remains of ancient humans have revolutionized the knowledge of the evolution of our species, including the discovery of a new hominin, and demonstrated admixtures with more distantly related archaic populations such as Neandertals and Denisovans. Moreover, it has also yielded novel insights into the evolution of ancient pathogens. The analysis of ancient microbial genomes allows the study of their recent evolution, presently over the last several millennia.

View Article and Find Full Text PDF

A novel method of library construction that takes advantage of a single-stranded DNA ligase has been recently described and used to generate high-resolution genomes from ancient DNA samples. While this method is effective and appears to recover a greater fraction of endogenous ancient material, there has been no direct comparison of results from different library construction methods on a diversity of ancient DNA samples. In addition, the single-stranded method is limited by high cost and lengthy preparation time and is restricted to the Illumina sequencing platform.

View Article and Find Full Text PDF