This research is focused on the development of an eco-friendly low-cost concrete using fly ash (FA) and marble powder waste (MPW) as partial replacements for cement and fine aggregate respectively. The substantial use of cement in concrete makes it expensive and contributes to global warming due to high carbon emissions. Thus, using such waste materials can help reduce the overall carbon footprint.
View Article and Find Full Text PDFScientists and engineers encounter considerable environmental and economic obstacles stemming from the depletion of crude oil or petroleum fossil fuel reservoirs. To mitigate this challenge, alternative solutions like bio-oil-modified binder derived from biomass have been innovated. This research aims to examine the feasibility of using bio-oil-modified binder obtained from cotton stalk waste as a modifier.
View Article and Find Full Text PDFWithin concrete engineering, the uptake of self-compacting concrete (SCC) represents a notable trend, delivering improved workability and placement efficiency. However, challenges persist, notably in achieving optimal performance while mitigating environmental impacts, particularly in cement consumption. However, simply reducing the cement content in the mix design can directly compromise the structural-concrete requirements.
View Article and Find Full Text PDF