Engineered DNA will slow the growth of a host cell if it redirects limiting resources or otherwise interferes with homeostasis. Escape mutants that alleviate this burden can rapidly evolve and take over cell populations, making genetic engineering less reliable and predictable. Synthetic biologists often use genetic parts encoded on plasmids, but their burden is rarely characterized.
View Article and Find Full Text PDFEngineered DNA will slow the growth of a host cell if it redirects limiting resources or otherwise interferes with homeostasis. Populations of engineered cells can rapidly become dominated by "escape mutants" that evolve to alleviate this burden by inactivating the intended function. Synthetic biologists working with bacteria rely on genetic parts and devices encoded on plasmids, but the burden of different engineered DNA sequences is rarely characterized.
View Article and Find Full Text PDFMiniaturized chromatography columns (minicolumns) operated by automated liquid handlers are an integral part of bioprocess purification development. However, these systems can be limited in both their efficiency and accessibility. Because the minicolumn chromatography operation itself is higher throughput, the lower throughput pre- and post-operation activities become the bottleneck of the workflow.
View Article and Find Full Text PDF