Publications by authors named "Diya Alsafadi"

A bionanocomposite based on biosynthesized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and reinforced with silver@zinc oxide (Ag-ZnO) was synthesized in variable loadings of Ag-ZnO using the in-situ casting dissolution technique. The degradable biopolymer PHBV had been biosynthesized from date waste as a renewable carbon source. The fabricated products were investigated as promising antibacterial materials.

View Article and Find Full Text PDF

The current study aims to design a nanoparticulate system that could encapsulate insulin and improve its stability. Nanoparticles were formulated by ionic cross-linking of chitosan (CS) with carbonate divalent anions. The interaction between the two moieties was evidenced by AFM, FTIR and surface tension measurements.

View Article and Find Full Text PDF

An extended release dosage form based on encapsulating the challenging drug busulfan within microspheres of the biodegradable, biocompatible and biosynthesized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) polyester was achieved. The used (PHBV) polymer was biosynthesized by the halophilic archaeon Haloferax mediterranei from date waste biomass as feed-stock. PHBV microspheres of 1.

View Article and Find Full Text PDF

Polyhydroxyalkanoate (PHA), a family of biodegradable and renewable biopolymers that could potentially play a significant role in bioeconomy. In this study we investigated the potential of date waste (DW) biomass as feedstock to produce PHA by the halophilic archaeon Haloferax mediterranei. The concentration of essential trace elements for H.

View Article and Find Full Text PDF

The extreme halophilic archaeon, Haloferax mediterranei can accumulate polyhydroxyalkanoate (PHA) from different renewable resources. To enhance the biosynthesis and quality of PHA, H. mediterranei cultivation media was optimized at different C/N ratios using glucose as the main carbon source.

View Article and Find Full Text PDF

Bacteriorhodopsin (BR) is an exciting photo-active retinal protein with many potential industrial applications. In this study, BR from the extremely halophilic archaeon Haloarcula marismortui (HmBR) was purified successfully using aqueous two phase extraction method. Absorption spectroscopy analysis showed maximum absorption peak of HmBR retinal protein (λ) at 415 nm.

View Article and Find Full Text PDF

Enzymatic synthesis of enantiopure aromatic secondary alcohols (including substituted, hetero-aromatic and bicyclic structures) was carried out using halophilic alcohol dehydrogenase ADH2 from Haloferax volcanii (HvADH2). This enzyme showed an unprecedented substrate scope and absolute enatioselectivity. The cofactor NADPH was used catalytically and regenerated in situ by the biocatalyst, in the presence of 5% ethanol.

View Article and Find Full Text PDF

Olive mill wastewater (OMW), a highly polluting waste from the olive oil industry, was utilized as sole carbon source for the production of polyhydroxyalkanoate (PHA) by extremely halophilic Haloferax Mediterranei (H. mediterranei) in a one stage cultivation step. H.

View Article and Find Full Text PDF

Alcohol dehydrogenase from halophilic archaeon Haloferax volcanii (HvADH2) was successfully covalently immobilized on metal-derivatized epoxy Sepabeads. The immobilization conditions were optimized by investigating several parameters that affect the halophilic enzyme-support interaction. The highest immobilization efficiency (100 %) and retention activity (60 %) were achieved after 48 h of incubation of the enzyme with Ni-epoxy Sepabeads support in 100 mM Tris-HCl buffer, pH 8, containing 3 M KCl at 5 °C.

View Article and Find Full Text PDF

The effect of various organic solvents on the catalytic activity, stability and substrate specificity of alchohol dehydrogenase from Haloferax volcanii (HvADH2) was evaluated. The HvADH2 showed remarkable stability and catalysed the reaction in aqueous-organic medium containing dimethyl sulfoxide (DMSO) and methanol (MeOH). Tetrahydrofuran and acetonitrile were also investigated and adversely affected the stability of the enzyme.

View Article and Find Full Text PDF

Haloarchaeal alcohol dehydrogenases are exciting biocatalysts with potential industrial applications. In this study, two alcohol dehydrogenase enzymes from the extremely halophilic archaeon Haloferax volcanii (HvADH1 and HvADH2) were homologously expressed and subsequently purified by immobilized metal-affinity chromatography. The proteins appeared to copurify with endogenous alcohol dehydrogenases, and a double Δadh2 Δadh1 gene deletion strain was constructed to prevent this occurrence.

View Article and Find Full Text PDF

Haloarchaeal alcohol dehydrogenases are of increasing interest as biocatalysts in the field of white biotechnology. In this study, the gene adh12 from the extreme halophile Haloarcula marismortui (HmADH12), encoding a 384 residue protein, was cloned into two vectors: pRV1 and pTA963. The resulting constructs were used to transform host strains Haloferax volcanii (DS70) and (H1209), respectively.

View Article and Find Full Text PDF