Publications by authors named "Dixuan Xue"

CAR-macrophage has promising prospect in treating solid tumors, due to its high infiltration into tumors, and its dual roles in phagocytosis and immune modulation. Here we show the clinical results of CAR-macrophage treatment of two ovarian cancer patients. The CAR-macrophages were produced by introducing a mesothelin targeting CAR to patients' primary peripheral blood mononuclear cell-derived macrophages, and the products were infused to patients intravenously.

View Article and Find Full Text PDF

Cancer presents a significant global public health challenge. Within the tumor microenvironment (TME), macrophages are the most abundant immune cell population. Tumor-associated macrophages (TAMs) undergo metabolic reprogramming through influence of the TME; thus, by manipulating key metabolic pathways such as glucose, lipid, or amino acid metabolism, it may be possible to shift TAMs towards an antitumor state, enhancing the immune response against tumors.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cell therapies have successfully treated hematological malignancies. Macrophages have also gained attention as an immunotherapy owing to their immunomodulatory capacity and ability to infiltrate solid tumors and phagocytize tumor cells. The first-generation CD3ζ-based CAR-macrophages could phagocytose tumor cells in an antigen-dependent manner.

View Article and Find Full Text PDF

Background: New strategies are needed to improve the treatment of patients with breast cancer (BC). Oncolytic virotherapy is a promising new tool for cancer treatment but still has a limited overall durable antitumor response. A novel replicable recombinant oncolytic herpes simplex virus type 1 called VG161 has been developed and has demonstrated antitumor effects in several cancers.

View Article and Find Full Text PDF

T cells, natural killer (NK) cells, macrophages (Macs), and dendritic cells (DCs) are among the most common sources for immune-cell-based therapies for cancer. Antitumor activity can be enhanced in induced pluripotent stem cell (iPSC)-derived immune cells by using iPSCs as a platform for stable genetic modifications that impact immuno-activating or -suppressive signaling pathways, such as transducing a chimeric antigen receptor (CAR) or deletion of immunosuppressive checkpoint molecules. This review outlines the utility of four iPSC-derived immune-cell-based therapies, highlight the latest progress and future trends in the genome-editing strategies designed to improve efficacy, safety, and universality, and provides perspectives that compare different contexts in which each of these iPSC-derived immune cell types can be most effectively used.

View Article and Find Full Text PDF