Accurate labeling of specific layers in the human cerebral cortex is crucial for advancing our understanding of neurodevelopmental and neurodegenerative disorders. Building on recent advancements in ultra-high-resolution ex vivo MRI, we present a novel semi-supervised segmentation model capable of identifying supragranular and infragranular layers in ex vivo MRI with unprecedented precision. On a dataset consisting of 17 whole-hemisphere ex vivo scans at 120 $\mu $m, we propose a Multi-resolution U-Nets framework that integrates global and local structural information, achieving reliable segmentation maps of the entire hemisphere, with Dice scores over 0.
View Article and Find Full Text PDFAccurate labeling of specific layers in the human cerebral cortex is crucial for advancing our understanding of neurodevelopmental and neurodegenerative disorders. Leveraging recent advancements in ultra-high resolution MRI, we present a novel semi-supervised segmentation model capable of identifying supragranular and infragranular layers in MRI with unprecedented precision. On a dataset consisting of 17 whole-hemisphere scans at 120 m, we propose a multi-resolution U-Nets framework (MUS) that integrates global and local structural information, achieving reliable segmentation maps of the entire hemisphere, with Dice scores over 0.
View Article and Find Full Text PDFBrain cells are arranged in laminar, nuclear, or columnar structures, spanning a range of scales. Here, we construct a reliable cell census in the frontal lobe of human cerebral cortex at micrometer resolution in a magnetic resonance imaging (MRI)-referenced system using innovative imaging and analysis methodologies. MRI establishes a macroscopic reference coordinate system of laminar and cytoarchitectural boundaries.
View Article and Find Full Text PDFThere has been a concerted effort by the neuroimaging community to establish standards for computational methods for data analysis that promote reproducibility and portability. In particular, the Brain Imaging Data Structure (BIDS) specifies a standard for storing imaging data, and the related BIDS App methodology provides a standard for implementing containerized processing environments that include all necessary dependencies to process BIDS datasets using image processing workflows. We present the BrainSuite BIDS App, which encapsulates the core MRI processing functionality of BrainSuite within the BIDS App framework.
View Article and Find Full Text PDFOptical coherence tomography (OCT) images of ex vivo human brain tissue are corrupted by multiplicative speckle noise that degrades the contrast to noise ratio (CNR) of microstructural compartments. This work proposes a novel algorithm to reduce noise corruption in OCT images that minimizes the penalized negative log likelihood of gamma distributed speckle noise. The proposed method is formulated as a majorize-minimize problem that reduces to solving an iterative regularized least squares optimization.
View Article and Find Full Text PDFObjective: Serial sectioning optical coherence tomography (OCT) enables accurate volumetric reconstruction of several cubic centimeters of human brain samples. We aimed to identify anatomical features of the ex vivo human brain, such as intraparenchymal blood vessels and axonal fiber bundles, from the OCT data in 3D, using intrinsic optical contrast.
Methods: We developed an automatic processing pipeline to enable characterization of the intraparenchymal microvascular network in human brain samples.
Optical coherence tomography (OCT) is an emerging 3D imaging technique that allows quantification of intrinsic optical properties such as scattering coefficient and back-scattering coefficient, and has proved useful in distinguishing delicate microstructures in the human brain. The origins of scattering in brain tissues are contributed by the myelin content, neuron size and density primarily; however, no quantitative relationships between them have been reported, which hampers the use of OCT in fundamental studies of architectonic areas in the human brain and the pathological evaluations of diseases. Here, we built a generalized linear model based on Mie scattering theory that quantitatively links tissue scattering to myelin content and neuron density in the human brain.
View Article and Find Full Text PDFStructural brain connectivity has been shown to be sensitive to the changes that the brain undergoes during Alzheimer's disease (AD) progression. In this work, we used our recently proposed structural connectivity quantification measure derived from diffusion magnetic resonance imaging, which accounts for both direct and indirect pathways, to quantify brain connectivity in dementia. We analyzed data from the second phase of Alzheimer's Disease Neuroimaging Initiative and third release in the Open Access Series of Imaging Studies data sets to derive relevant information for the study of the changes that the brain undergoes in AD.
View Article and Find Full Text PDFThe optical properties of biological samples provide information about the structural characteristics of the tissue and any changes arising from pathological conditions. Optical coherence tomography (OCT) has proven to be capable of extracting tissue's optical properties using a model that combines the exponential decay due to tissue scattering and the axial point spread function that arises from the confocal nature of the detection system, particularly for higher numerical aperture (NA) measurements. A weakness in estimating the optical properties is the inter-parameter cross-talk between tissue scattering and the confocal parameters defined by the Rayleigh range and the focus depth.
View Article and Find Full Text PDFProc IEEE Int Symp Biomed Imaging
April 2018
The estimation of orientation distribution functions (ODFs) from diffusion MRI data is an important step in diffusion tractography, but existing estimation methods often depend on signal modeling assumptions that are violated by real data, lack theoretical characterization, and/or are only applicable to a small range of q-space sampling patterns. As a result, existing ODF estimation methods may be suboptimal. In this work, we propose a novel ODF estimation approach that learns a linear ODF estimator from training data.
View Article and Find Full Text PDFSeveral studies comparing adult musicians and nonmusicians have shown that music training is associated with structural brain differences. It is not been established, however, whether such differences result from pre-existing biological traits, lengthy musical training, or an interaction of the two factors, or if comparable changes can be found in children undergoing music training. As part of an ongoing longitudinal study, we investigated the effects of music training on the developmental trajectory of children's brain structure, over two years, beginning at age 6.
View Article and Find Full Text PDFThe data measured in diffusion MRI can be modeled as the Fourier transform of the Ensemble Average Propagator (EAP), a probability distribution that summarizes the molecular diffusion behavior of the spins within each voxel. This Fourier relationship is potentially advantageous because of the extensive theory that has been developed to characterize the sampling requirements, accuracy, and stability of linear Fourier reconstruction methods. However, existing diffusion MRI data sampling and signal estimation methods have largely been developed and tuned without the benefit of such theory, instead relying on approximations, intuition, and extensive empirical evaluation.
View Article and Find Full Text PDFIEEE Trans Med Imaging
October 2015
The statistics of many MR magnitude images are described by the non-central chi (NCC) family of probability distributions, which includes the Rician distribution as a special case. These distributions have complicated negative log-likelihoods that are nontrivial to optimize. This paper describes a novel majorize-minimize framework for NCC data that allows penalized maximum likelihood estimates to be obtained by solving a series of much simpler regularized least-squares surrogate problems.
View Article and Find Full Text PDF