Dysregulated protein degradation via the ubiquitin-proteasomal pathway can induce numerous disease phenotypes, including cancer, neurodegeneration, and diabetes. Stabilizing improperly ubiquitinated proteins via target-specific deubiquitination is thus a critical therapeutic goal. Building off the major advances in targeted protein degradation (TPD) using bifunctional small-molecule degraders, targeted protein stabilization (TPS) modalities have been described recently.
View Article and Find Full Text PDFDesigning binders to target undruggable proteins presents a formidable challenge in drug discovery, requiring innovative approaches to overcome the lack of putative binding sites. Recently, generative models have been trained to design binding proteins via three-dimensional structures of target proteins, but as a result, struggle to design binders to disordered or conformationally unstable targets. In this work, we provide a generalizable algorithmic framework to design short, target-binding linear peptides, requiring only the amino acid sequence of the target protein.
View Article and Find Full Text PDFTarget proteins that lack accessible binding pockets and conformational stability have posed increasing challenges for drug development. Induced proximity strategies, such as PROTACs and molecular glues, have thus gained attention as pharmacological alternatives, but still require small molecule docking at binding pockets for targeted protein degradation. The computational design of protein-based binders presents unique opportunities to access "undruggable" targets, but have often relied on stable 3D structures or structure-influenced latent spaces for effective binder generation.
View Article and Find Full Text PDF