Publications by authors named "Divya Sitaraman"

The central complex (CX) plays a key role in many higher-order functions of the insect brain including navigation and activity regulation. Genetic tools for manipulating individual cell types, and knowledge of what neurotransmitters and neuromodulators they express, will be required to gain mechanistic understanding of how these functions are implemented. We generated and characterized split-GAL4 driver lines that express in individual or small subsets of about half of CX cell types.

View Article and Find Full Text PDF

Sleep is a fundamental feature of life for virtually all multicellular animals, but many questions remain about how sleep is regulated and what biological functions it plays. Substantial headway has been made in the study of both circadian rhythms and sleep in the fruit fly , much of it through studies of individual fly activity using beam break counts from activity monitors (DAMs). The number of laboratories worldwide studying sleep in has grown from only a few 20 years ago to hundreds today.

View Article and Find Full Text PDF

Sleep is a fundamental feature of life for virtually all multicellular animals, but many questions remain about how sleep is regulated by circadian rhythms, homeostatic sleep drive that builds up with wakefulness, and modifying factors such as hunger or social interactions, as well as about the biological functions of sleep. Substantial headway has been made in the study of both circadian rhythms and sleep in the fruit fly , much of it through studies of individual fly activity using activity monitors (DAMs). Here, we describe approaches for the activation of specific neurons of interest using optogenetics (involving genetic modifications that allow for light-based neuronal activation) and thermogenetics (involving genetic modifications that allow for temperature-based neuronal activation) so that researchers can evaluate the roles of those neurons in controlling rest and activity behavior.

View Article and Find Full Text PDF

Sleep is important for survival, and the need for sleep is conserved across species. In the past two decades, the fruit fly has emerged as a promising system in which to study the genetic, neural, and physiological bases of sleep. Through significant advances in our understanding of the regulation of sleep in flies, the field is poised to address several open questions about sleep, such as how the need for sleep is encoded, how molecular regulators of sleep are situated within brain networks, and what the functions of sleep are.

View Article and Find Full Text PDF

Balance between sleep, wakefulness and arousal is important for survival of organisms and species as a whole. While, the benefits of sleep both in terms of quantity and quality is widely recognized across species, sleep has a cost for organismal survival and reproduction. Here we focus on how sleep duration, sleep depth and sleep pressure affect the ability of animals to engage in courtship and egg-laying behaviors critical for reproductive success.

View Article and Find Full Text PDF
Article Synopsis
  • Sleep is crucial for survival and has been observed in many animal species, from jellyfish to humans, yet the exact mechanisms regulating sleep remain unclear.
  • Drosophila melanogaster, or the fruit fly, serves as an ideal model to study sleep since its brain structures, particularly the mushroom body (MB) and central complex (CX), play significant roles in sleep regulation.
  • Recent findings indicate that specific dopamine neurons (PAM-DANs) in the MB influence wakefulness through GABA receptors, and both DopR1 and DopR2 receptors in downstream neurons participate in the regulation of sleep, highlighting a complex dopamine-modulated sleep circuit that affects sleep and wakefulness balance.
View Article and Find Full Text PDF

This review serves as an introduction to a Special Issue of Comparative Biochemistry and Physiology, focused on using non-human models to study biomedical physiology. The concept of a model differs across disciplines. For example, several models are used primarily to gain an understanding of specific human pathologies and disease states, whereas other models may be focused on gaining insight into developmental or evolutionary mechanisms.

View Article and Find Full Text PDF

The Publisher regrets that this article is an accidental duplication of an article that has already been published in Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, Volume 255, 2021, 110593, https://doi.org/10.1016/j.

View Article and Find Full Text PDF

Troy D. Zars (1967-2018) was an American biologist. He studied the relationships between genes, neuronal circuits and behavior in the fruit fly .

View Article and Find Full Text PDF

Preference for spatial locations to maximize favorable outcomes and minimize aversive experiences helps animals survive and adapt to the changing environment. Both visual and non-visual cues play a critical role in spatial navigation and memory of a place supports and guides these strategies. Here we present the neural, genetic and behavioral processes involved in place memory formation using with a focus on non-visual cue based spatial memories.

View Article and Find Full Text PDF

Sleep is a conserved neurobehavioral state observed in animals with sufficiently complex nervous systems and is critical for survival. While the exact function of sleep remains unknown, the lack of sleep can have a range of physiological and behavioral effects. Studies in invertebrates and vertebrates have identified conserved neural mechanisms and cellular pathways in control of sleep, wakefulness and arousal.

View Article and Find Full Text PDF

A key element of laboratory courses introducing students to neuroscience includes behavioral exercises. Associative learning experiments often conducted in research laboratories are difficult to perform and time consuming. Commonly, these experiments cannot be performed without extensive instrumentation or animal care facilities.

View Article and Find Full Text PDF

Feedback mechanisms in operant learning are critical for animals to increase reward or reduce punishment. However, not all conditions have a behavior that can readily resolve an event. Animals must then try out different behaviors to better their situation through outcome learning.

View Article and Find Full Text PDF

Animals execute one particular behavior among many others in a context-dependent manner, yet the mechanisms underlying such behavioral choice remain poorly understood. Here we studied how two fundamental behaviors, sex and sleep, interact at genetic and neuronal levels in Drosophila. We show that an increased need for sleep inhibits male sexual behavior by decreasing the activity of the male-specific P1 neurons that coexpress the sex determination genes fru and dsx, but does not affect female sexual behavior.

View Article and Find Full Text PDF

The mechanisms by which clock neurons in the Drosophila brain confer an ∼24-hr rhythm onto locomotor activity are unclear, but involve the neuropeptide diuretic hormone 44 (DH44), an ortholog of corticotropin-releasing factor. Here we identified DH44 receptor 1 as the relevant receptor for rest:activity rhythms and mapped its site of action to hugin-expressing neurons in the subesophageal zone (SEZ). We traced a circuit that extends from Dh44-expressing neurons in the pars intercerebralis (PI) through hugin+ SEZ neurons to the ventral nerve cord.

View Article and Find Full Text PDF

The Drosophila mushroom body (MB) is an associative learning network that is important for the control of sleep. We have recently identified particular intrinsic MB Kenyon cell (KC) classes that regulate sleep through synaptic activation of particular MB output neurons (MBONs) whose axons convey sleep control signals out of the MB to downstream target regions. Specifically, we found that sleep-promoting KCs increase sleep by preferentially activating cholinergic sleep-promoting MBONs, while wake-promoting KCs decrease sleep by preferentially activating glutamatergic wake-promoting MBONs.

View Article and Find Full Text PDF

The Drosophila mushroom body (MB) is a key associative memory center that has also been implicated in the control of sleep. However, the identity of MB neurons underlying homeostatic sleep regulation, as well as the types of sleep signals generated by specific classes of MB neurons, has remained poorly understood. We recently identified two MB output neuron (MBON) classes whose axons convey sleep control signals from the MB to converge in the same downstream target region: a cholinergic sleep-promoting MBON class and a glutamatergic wake-promoting MBON class.

View Article and Find Full Text PDF

Animals discriminate stimuli, learn their predictive value and use this knowledge to modify their behavior. In Drosophila, the mushroom body (MB) plays a key role in these processes. Sensory stimuli are sparsely represented by ∼2000 Kenyon cells, which converge onto 34 output neurons (MBONs) of 21 types.

View Article and Find Full Text PDF

The biogenic amines dopamine, octopamine, and serotonin are critical in establishing normal memories. A common view for the amines in insect memory performance has emerged in which dopamine and octopamine are largely responsible for aversive and appetitive memories. Examination of the function of serotonin begins to challenge the notion of one amine type per memory because altering serotonin function also reduces aversive olfactory memory and place memory levels.

View Article and Find Full Text PDF

Animals receive rewards and punishments in different patterns. Sometimes stimuli or behaviors can become predictors of future good or bad events. Through learning, experienced animals can then avoid new but similar bad situations, or actively seek those conditions that give rise to good results.

View Article and Find Full Text PDF

The biogenic amines play a critical role in establishing memories. In the insects, octopamine, dopamine, and serotonin have key functions in memory formation. For Drosophila, octopamine is necessary and sufficient for appetitive olfactory memory formation.

View Article and Find Full Text PDF

The ad hoc genetic correlation between ethanol sensitivity and learning mechanisms in Drosophila could overemphasize a common process supporting both behaviors. To challenge directly the hypothesis that these mechanisms are singular, we examined the learning phenotypes of 10 new strains. Five of these have increased ethanol sensitivity, and the other 5 do not.

View Article and Find Full Text PDF

Biogenic amines, such as serotonin and dopamine, can be important in reinforcing associative learning. This function is evident as changes in memory performance with manipulation of either of these signals. In the insects, evidence begins to argue for a common role of dopamine in negatively reinforced memory.

View Article and Find Full Text PDF