Publications by authors named "Divya Dube"

In chronic lymphocytic leukemia (CLL), the geographical bias in immunoglobulin heavy-chain variable (IGHV) gene usage lead us to analyze IGHV gene usage and B-cell receptor stereotypy in 195 patients from India. IGHV3, IGHV4, and IGHV1 families were the most frequently used. 20.

View Article and Find Full Text PDF

Trypanosoma brucei Pteridine reductase (TbPTR1) is of vital importance and is an established drug target for dreaded Human African trypanosomiasis (HAT). Pharmacophore perception strategy has been employed to identify key chemical features responsible for the biological activity for TbPTR1. The findings suggest that three different pharmacophore features can be associated with T.

View Article and Find Full Text PDF

Introduction: Polymorphisms in CYP2C9 can vary the rate of metabolic clearance of oral anticoagulants, risking toxicity in patients. The present study focused on exploring the genetic etiology of idiopathic hyper sensitivity to coumarin anticoagulants in a patient who presented with multiple bleeding episodes and supra-elevated International Normalized Ratios.

Materials And Methods: Bidirectional gene sequencing of CYP2C9 and VKORC1 was carried out.

View Article and Find Full Text PDF

Peptidoglycan recognition proteins (PGRPs) are part of the innate immune system. The 19 kDa Short PGRP (PGRP-S) is one of the four mammalian PGRPs. The concentration of PGRP-S in camel (CPGRP-S) has been shown to increase considerably during mastitis.

View Article and Find Full Text PDF

Short peptidoglycan recognition protein (PGRP-S) is a member of the mammalian innate immune system. PGRP-S from Camelus dromedarius (CPGRP-S) has been shown to bind to lipopolysaccharide (LPS), lipoteichoic acid (LTA) and peptidoglycan (PGN). Its structure consists of four molecules A, B, C and D with ligand binding clefts situated at A-B and C-D contacts.

View Article and Find Full Text PDF

Peptidoglycan (PGN) consists of repeating units of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc), which are cross-linked by short peptides. It is well known that PGN forms a major cell wall component of bacteria making it an important ligand for the recognition by peptidoglycan recognition proteins (PGRPs) of the host. The binding studies showed that PGN, GlcNAc, and MurNAc bind to camel PGRP-S (CPGRP-S) with affinities corresponding to dissociation constants of 1.

View Article and Find Full Text PDF

Short peptidoglycan recognition protein (PGRP-S) is a member of the innate immunity system in mammals. PGRP-S from Camelus dromedarius (CPGRP-S) is found to be highly potent against bacterial infections. It is capable of binding to a wide range of pathogen-associated molecular patterns (PAMPs) including lipopolysaccharide (LPS), lipoteichoic acid (LTA) and peptidoglycan (PGN).

View Article and Find Full Text PDF

Pteridine reductase is a promising target for development of novel therapeutic agents against Trypanosomatid parasites. A 3D-QSAR pharmacophore hypothesis has been generated for a series of L. major pteridine reductase inhibitors using Catalyst/HypoGen algorithm for identification of the chemical features that are responsible for the inhibitory activity.

View Article and Find Full Text PDF

The peptidoglycan recognition protein PGRP-S is an innate immunity molecule that specifically interacts with microbial peptidoglycans and other pathogen-associated molecular patterns. We report here two structures of the unique tetrameric camel PGRP-S (CPGRP-S) complexed with (i) muramyl dipeptide (MDP) at 2.5 Å resolution and (ii) GlcNAc and β-maltose at 1.

View Article and Find Full Text PDF

Peptidoglycan recognition proteins (PGRPs) are involved in the recognition of pathogen-associated molecular patterns. The well known pathogen-associated molecular patterns include LPS from Gram-negative bacteria and lipoteichoic acid (LTA) from Gram-positive bacteria. In this work, the crystal structures of two complexes of the short form of camel PGRP (CPGRP-S) with LPS and LTA determined at 1.

View Article and Find Full Text PDF

Purpose: To look for segregation of Visual System Homeobox 1 (VSX1) mutations in family members of a patient with keratoconus.

Methods: Our initial molecular genetic studies conducted to identify the role of VSX1 in the causation of keratoconus had identified a novel mutation in one patient. He later presented to the clinic affected with vernal kerato conjunctivitis (VKC) accompanied by his brother, also similarly affected.

View Article and Find Full Text PDF

Background: Plants produce a wide range of proteinaceous inhibitors to protect themselves against hydrolytic enzymes. Recently a novel protein XAIP belonging to a new sub-family (GH18C) was reported to inhibit two structurally unrelated enzymes xylanase GH11 and α-amylase GH13. It was shown to inhibit xylanase GH11 with greater potency than that of α-amylase GH13.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to analyze mutations in the TGFBI gene in corneal dystrophy patients from North India and link these genetic changes to clinical symptoms and protein functions.
  • Eighty individuals from 61 families diagnosed with granular and/or lattice corneal dystrophy underwent detailed evaluations and genetic testing to find mutations and understand their structural effects on proteins.
  • Key findings included common mutations like Arg555Trp, novel mutations including Ser516Arg, and a report on the genetic diversity in corneal dystrophy cases, emphasizing the need for personalized diagnosis and treatment approaches.
View Article and Find Full Text PDF

A novel plant protein isolated from the underground bulbs of Scadoxus multiflorus, xylanase and alpha-amylase inhibitor protein (XAIP), inhibits two structurally and functionally unrelated enzymes: xylanase and alpha-amylase. The mature protein contains 272 amino acid residues which show sequence identities of 48% to the plant chitinase hevamine and 36% to xylanase inhibitor protein-I, a double-headed inhibitor of GH10 and GH11 xylanases. However, unlike hevamine, it is enzymatically inactive and, unlike xylanase inhibitor protein-I, it inhibits two functionally different classes of enzyme.

View Article and Find Full Text PDF

Purpose: To study the clinical, histological, in vivo confocal microscopic, and molecular profile in a family with gelatinous drop-like corneal dystrophy (GDLD) from north India.

Methods: Two siblings from a consanguineous family presented with clinical features analogous to GDLD. Detailed clinical evaluations were performed for all the available affected and unaffected members of this family.

View Article and Find Full Text PDF

A well-organized and efficient approach toward the solution phase synthesis of a library of carbapeptide analogues based on glycosyl amino ester scaffold is described. The reported synthetic route involves a five step preparation of heptofuranuronamides 6a-h and octopyranuronamide 7e from glycosyl amino esters 1 and 7, respectively. Coupling of glycosyl amino esters 1 or 7 with three different N-Fmoc protected amino acids afford the N-Fmoc protected intermediates 2a-c and 7a.

View Article and Find Full Text PDF

Nucleoside diphosphate kinases (Ndks) play an important role in a plethora of regulatory and metabolic functions. Inhibition of the B. anthracis Ndk mRNA results in the formation of nonviable aberrant spores.

View Article and Find Full Text PDF

Mycobacterium tuberculosis codes for an essential NAD+-dependent DNA ligase (MtuLigA) which is a novel, validated, and attractive drug target. We created mutants of the enzyme by systematically deleting domains from the C-terminal end of the enzyme to probe for their functional roles in the DNA nick joining reaction. Deletion of just the BRCT domain from MtuLigA resulted in total loss of activity in in vitro assays.

View Article and Find Full Text PDF

DNA ligases are important enzymes which catalyze the joining of nicks between adjacent bases of double-stranded DNA. NAD+-dependent DNA ligases (LigA) are essential in bacteria and are absent in humans. They have therefore been identified as novel, validated and attractive drug targets.

View Article and Find Full Text PDF