(1) Background: The categorization of recurrent and non-recurrent odontogenic keratocyst is complex and challenging for both clinicians and pathologists. What sets this cyst apart is its aggressive nature and high likelihood of recurrence. Despite identifying various predictive clinical/radiological/histopathological parameters, clinicians still face difficulties in therapeutic management due to its inherent aggressive nature.
View Article and Find Full Text PDFThe microscopic diagnostic differentiation of odontogenic cysts from other cysts is intricate and may cause perplexity for both clinicians and pathologists. Of particular interest is the odontogenic keratocyst (OKC), a developmental cyst with unique histopathological and clinical characteristics. Nevertheless, what distinguishes this cyst is its aggressive nature and high tendency for recurrence.
View Article and Find Full Text PDFJ Pers Med
July 2022
(1) Background: Odontogenic keratocysts (OKCs) are enigmatic developmental cysts that deserve special attention due to their heterogeneous appearance in histopathological characteristics and high recurrence rate. Despite several nomenclatures for classification, clinicians still confront challenges in its diagnosis and predicting its recurrence. This paper proposes an ensemble deep-learning-based prognostic and prediction algorithm, for the recurrence of sporadic odontogenic keratocysts, on hematoxylin and eosin stained pathological images of incisional biopsies before treatment.
View Article and Find Full Text PDFBackground: The goal of the study was to create a histopathology image classification automation system that could identify odontogenic keratocysts in hematoxylin and eosin-stained jaw cyst sections.
Methods: From 54 odontogenic keratocysts, 23 dentigerous cysts, and 20 radicular cysts, about 2657 microscopic pictures with 400× magnification were obtained. The images were annotated by a pathologist and categorized into epithelium, cystic lumen, and stroma of keratocysts and non-keratocysts.