Publications by authors named "Divona M"

Acute promyelocytic leukemia (APL) is a rare type of AML, characterized by the t(15;17) translocation and accounting for 8-15% of cases. The introduction of target therapies, such as all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), radically changed the management of APL, making it the most curable AML subtype. However, a small percentage (estimated to be 2%) of AML presenting with APL-like morphology and/or immunophenotype lacks t(15;17).

View Article and Find Full Text PDF

Vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) is a haemato-inflammatory syndrome genetically defined by somatic mutations in the X-linked UBA1 gene, typically Val/Thr/Leu substitutions at the Met41 hotspot. Clinical manifestations are heterogeneous and refractory to most haemato-rheumatological treatments. To date, no guidelines exist for the management of VEXAS, and scarce is the evidence on methodology and clinical significance of longitudinal UBA1 clonal burden evaluation upon therapy.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) with inv(16) is typically associated with a favourable prognosis. However, up to 40 % of patients will eventually experience disease relapse. Herein, we dissected the genomic and transcriptomic profile of inv(16) AML to identify potential prognostic markers and therapeutic vulnerabilities.

View Article and Find Full Text PDF
Article Synopsis
  • Bullous pemphigoid (BP) is a rare blistering skin disease that may signal underlying cancers, particularly hematological malignancies like acute myeloid leukemia (AML).
  • A 28-year-old male patient with both BP and de novo AML was treated using a combination of immunosuppressive therapy and chemotherapy to effectively address both conditions.
  • After aggressive treatment, the patient achieved full remission from AML and complete resolution of BP, along with normalized BP180 antibody levels after receiving an autologous stem cell transplant.
View Article and Find Full Text PDF

Extramedullary (EM) colonization is a rare complication of acute myeloid leukemia (AML), occurring in about 10% of patients, but the processes underlying tissue invasion are not entirely characterized. Through the application of RNAseq technology, we examined the transcriptome profile of 13 AMLs, 9 of whom presented an EM localization. Our analysis revealed significant deregulation within the extracellular matrix (ECM)-receptor interaction and focal-adhesion pathways, specifically in the EM sites.

View Article and Find Full Text PDF

Background: Acute myeloid leukemia (AML) patients bearing the ITD mutation in the tyrosine kinase receptor FLT3 (FLT3-ITD) present a poor prognosis and a high risk of relapse. FLT3-ITD is retained in the endoplasmic reticulum (ER) and generates intrinsic proteotoxic stress. We devised a strategy based on proteotoxic stress, generated by the combination of low doses of the differentiating agent retinoic acid (R), the proteasome inhibitor bortezomib (B), and the oxidative stress inducer arsenic trioxide (A).

View Article and Find Full Text PDF

We characterize the metabolic background in distinct Acute Myeloid Leukemias (AMLs), by comparing the metabolism of primary AML blasts isolated at diagnosis with that of normal hematopoietic maturing progenitors, using the Seahorse XF Agilent. Leukemic cells feature lower spare respiratory (SRC) and glycolytic capacities as compared to hematopoietic precursors (i.e.

View Article and Find Full Text PDF

The increasing knowledge of molecular genetics of acute myeloid leukemia (AML) necessitated the update of previous diagnostic and prognostic schemes, which resulted in the development of the World Health Organization (WHO), the International Consensus Classification (ICC), and the new European LeukemiaNet (ELN) recommendations in 2022. We aimed to provide a real-world application of the new models, unravel differences and similarities, and test their implementation in clinical AML diagnosis. A total of 1001 patients diagnosed with AML were reclassified based on the new schemes.

View Article and Find Full Text PDF

The evolution of myeloproliferative neoplasms (MPN) to acute myeloid leukemia (AML) occurs in 2-10% of patients, depending on the MPN subtype, treatment, and follow-up length. The reverse-path from AML to MPN has been rarely reported. We herein present a 75 years old woman with AML, in whom a -V617F positive polycythemia vera (PV) emerged during follow-up, 19 months from the end of consolidation treatment.

View Article and Find Full Text PDF

Vitamin C has been shown to play a significant role in suppressing progression of leukemia through epigenetic mechanisms. We aimed to study the role of vitamin C in acute myeloid leukemia (AML) biology and clinical course. To this purpose, the plasma levels of vitamin C at diagnosis in 62 patients with AML (including 5 cases with acute promyelocytic leukemia, APL),7 with myelodysplastic syndrome (MDS), and in 15 healthy donors (HDs) were studied.

View Article and Find Full Text PDF

Acute Myeloid Leukaemia (AML) is a haematological malignancy showing a hypervariable landscape of clinical outcomes and phenotypic differences, explainable by heterogeneity at the cellular and molecular level. Among the most common genomic alterations, CBFB-MYH11 rearrangement and FLT3-ITD gene mutations, have opposite clinical significance and are unfrequently associated. We present here a Molecular Case Report in which these two events co-exist an ultra-aggressive phenotype resulting in death in 4 days from hospital admittance.

View Article and Find Full Text PDF

In the present study, we characterized the metabolic background of different Acute Myeloid Leukemias' (AMLs) cells and described a heterogeneous and highly flexible energetic metabolism. Using the Seahorse XF Agilent, we compared the metabolism of normal hematopoietic progenitors with that of primary AML blasts and five different AML cell lines. We assessed the efficacy and mechanism of action of the association of high doses of ascorbate, a powerful oxidant, with the metabolic inhibitor buformin, which inhibits mitochondrial complex I and completely shuts down mitochondrial contributions in ATP production.

View Article and Find Full Text PDF

The addition of Venetoclax (VEN) to Hypomethylating agents (HMAs) significantly improves the probability of complete remission and prolongs survival in patients with Acute Myeloid Leukemia (AML) when compared to HMA alone. However, the mutated clone composition may impact the probability of response and its duration. Here, we describe the molecular profile of a patient with AML rapidly evolved from a previous therapy-related-Chronic MyeloMonocytic Leukemia, who achieved safely complete remission after treatment with the VEN/Azacitidine combination, even in the presence of SARS-COVID-2 infection.

View Article and Find Full Text PDF

Acute promyelocytic leukemia (APL) accounts for 10-15% of newly diagnosed acute myeloid leukemias (AML) and is typically caused by the fusion of promyelocytic leukemia with retinoic acid receptor α () gene. The prognosis is excellent, thanks to the all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) combination therapy. A small percentage of APLs (around 2%) is caused by atypical transcripts, most of which involve or other members of retinoic acid receptors ( or ).

View Article and Find Full Text PDF

Using a multiparametric flow cytometry assay, we assessed the predictive power of a threshold calculated applying the criteria of limit of detection (LOD) and limit of quantitation (LOQ) in adult patients with acute myeloid leukemia. This was a post-hoc analysis of 261 patients enrolled in the GIMEMA AML1310 prospective trial. According to the protocol design, using the predefined measurable residual disease (MRD) threshold of 0.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is the most common leukemia in adults. In spite of the most recent discoveries about the molecular landscape of this disease, the treatment of elderly and unfit young patients continues to be a great challenge. The hypomethylating agents (HMA) still represent an effective therapeutic option for these categories, especially for the low-risk subgroups.

View Article and Find Full Text PDF

An unmet clinical need currently exists for elderly patients with relapsed/resistant (R/R) Philadelphia (Ph) positive acute lymphoblastic leukemia (ALL), nearly all who have a very poor prognosis. This includes patients already exposed to the first or second generation tyrosine kinase inhibitors (TKIs) and therefore has few treatment options available. New immunotherapies and targeted agents have shown encouraging activity in R/R ALL irrespective of age.

View Article and Find Full Text PDF

Background: The ZBTB16-RARA fusion gene, resulting from the reciprocal translocation between ZBTB16 on chromosome 11 and RARA genes on chromosome 17 [t(11;17)(q23;q21)], is rarely observed in acute myeloid leukemia (AML), and accounts for about 1% of retinoic acid receptor-α (RARA) rearrangements. AML with this rare translocation shows unusual bone marrow (BM) morphology, with intermediate aspects between acute promyelocytic leukemia (APL) and AML with maturation. Patients may have a high incidence of disseminated intravascular coagulation at diagnosis, are poorly responsive to all-trans retinoic acid (ATRA) and arsenic tryoxyde, and are reported to have an overall poor prognosis.

View Article and Find Full Text PDF

Arsenic trioxide (ATO) is an anticancer agent used for the treatment ofacute promyelocytic leukemia (APL). However, 5%-10% of patients fail to respond or experience disease relapse. Based on poly(ADP-ribose) polymerase (PARP) 1 involvement in the processing of DNA demethylation, here we have tested the in vitro susceptibility of ATO-resistant clones (derived from the human APL cell line NB4) to PARP inhibitors (PARPi) in combination with hypomethylating agents (azacitidine and decitabine) or high-dose vitamin C (ascorbate), which induces 5-hydroxymethylcytosine (5hmC)-mediated DNA demethylation.

View Article and Find Full Text PDF

Measurable residual disease (MRD) is increasingly employed as a biomarker of quality of complete remission (CR) in intensively treated acute myeloid leukemia (AML) patients. We evaluated if a MRD-driven transplant policy improved outcome as compared to a policy solely relying on a familiar donor availability. High-risk patients (adverse karyotype, FLT3-ITD) received allogeneic hematopoietic cell transplant (alloHCT) whereas for intermediate and low risk ones (CBF-AML and NPM1-mutated), alloHCT or autologous SCT was delivered depending on the post-consolidation measurable residual disease (MRD) status, as assessed by flow cytometry.

View Article and Find Full Text PDF