Publications by authors named "Ditte Marie Jensen"

Introduction: Several mouse models with diverse disease etiologies are used in preclinical research for chronic kidney disease (CKD). Here, we performed a head-to-head comparison of renal transcriptome signatures in standard mouse models of CKD to assess shared and distinct molecular changes in three mouse models commonly employed in preclinical CKD research and drug discovery.

Methods: All experiments were conducted on male C57BL/6J mice.

View Article and Find Full Text PDF

Background And Aims: Randomized clinical studies have shown a reduction in cardiovascular outcomes with glucagon-like peptide 1 receptor agonist (GLP-1RA) treatment with the hypothesized mechanisms being an underlying effect on atherosclerosis. Here, we aimed to assess the pharmacological effects of semaglutide in an atheroprone murine model that recapitulates central mechanisms related to vascular smooth muscle cell (VSMC) phenotypic switching and endothelial dysfunction known to operate within the atherosclerotic plaque.

Methods: In study A, we employed an electrical current to the carotid artery in ApoE-/- mice to induce severe VSMC injury and death, after which the arteries were allowed to heal for 4 weeks.

View Article and Find Full Text PDF

Vegetable carbon (E153) and titanium dioxide (E171) are widely used as black and white food colour additives. The aim of this study was to assess gastrointestinal tight junction and systemic genotoxic effects in rats following exposure to E153 and E171 for 10 weeks by oral gavage once a week. The expression of tight junction proteins was assessed in intestinal tissues.

View Article and Find Full Text PDF

There has been a steady output of epidemiological studies linking environmental and occupational exposures to altered telomere length, showing mainly positive associations with persistent organic pollutants, inverse association with cadmium and inconsistent results with arsenic and lead. A bell-shaped dose-response relationship has been observed for ionizing radiation with telomere shortening at a low dose. Long-term air pollution is associated with telomere shortening, whereas the short-term exposure studies have shown mixed results.

View Article and Find Full Text PDF

Animal studies have shown that titanium dioxide (TiO) exposure affects arterial vasomotor function, whereas little is known about the effects in arteries from humans. This study investigated vasomotor responses after direct exposure of human subcutaneous arteries to food-grade TiO (E171) (14 or 140 μg/ml) for 30 min and 18 h. Vasomotor responses to bradykinin, 5-hydroxytryptamine (5-HT), sarafotoxin 6c (S6c) and nitroglycerin were recorded in wire-myographs.

View Article and Find Full Text PDF

Background: Humans are continuously exposed to particles in the gastrointestinal tract. Exposure may occur directly through ingestion of particles via food or indirectly by removal of inhaled material from the airways by the mucociliary clearance system. We examined the effects of food-grade particle exposure on vasomotor function and systemic oxidative stress in an ex vivo study and intragastrically exposed rats.

View Article and Find Full Text PDF

Nanosized titanium dioxide (TiO) has been investigated in numerous studies on genotoxicity, including comet assay endpoints and oxidatively damaged DNA in cell cultures and animal models. The results have been surprisingly mixed, which might be attributed to physico-chemical differences of the tested TiO. In the present review, we assess the role of certain methodological issues and publication bias.

View Article and Find Full Text PDF

The formamidopyrimidine DNA glycosylase (Fpg) and human 8-oxoguanine DNA glycosylase (hOGG1)-modified comet assays have been widely used in human biomonitoring studies. The purpose of this article is to assess differences in reported levels of Fpg- and hOGG1-sensitive sites in leukocytes and suggest suitable assay controls for the measurement of oxidatively damaged DNA. An assessment of the literature showed a large variation in the reported levels of Fpg-sensitive sites (range 0.

View Article and Find Full Text PDF

Inflammation and oxidative stress are considered the main drivers of vasomotor dysfunction and progression of atherosclerosis after inhalation of particulate matter. In addition, new studies have shown that particle exposure can induce the level of bioactive mediators in serum, driving vascular- and systemic toxicity. We aimed to investigate if pulmonary inflammation would accelerate nanoparticle-induced atherosclerotic plaque progression in Apolipoprotein E knockout (ApoE-/-) mice.

View Article and Find Full Text PDF

Background: Alcohol consumption is associated with increased risk of breast cancer (BC), and the underlying mechanism is thought to be sex-hormone driven. In vitro and observational studies suggest a mechanism involving peroxisome proliferator-activated receptor gamma (PPARγ) in a complex with peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) and interaction with aromatase (encoded by CYP19A1). Use of non-steroidal anti-inflammatory drugs (NSAID) may also affect circulating sex-hormone levels by modifying PPARγ activity.

View Article and Find Full Text PDF

Exposure to particulate matter (PM) from traffic vehicles is hazardous to the vascular system, leading to clinical manifestations and mortality due to ischemic heart disease. By analogy, nanomaterials may also be associated with the same outcomes. Here, the effects of exposure to PM from ambient air, diesel exhaust and certain nanomaterials on atherosclerosis and vasomotor function in animals have been assessed.

View Article and Find Full Text PDF

Exposure to ambient air particles is associated with elevated levels of DNA strand breaks (SBs) and endonuclease III, formamidopyrimidine DNA glycosylase (FPG) and oxoguanine DNA glycosylase-sensitive sites in cell cultures, animals and humans. In both animals and cell cultures, increases in SB and in oxidatively damaged DNA are seen after exposure to a range of engineered nanomaterials (ENMs), including carbon black, carbon nanotubes, fullerene C60, ZnO, silver and gold. Exposure to TiO2 has generated mixed data with regard to SB and oxidatively damaged DNA in cell cultures.

View Article and Find Full Text PDF

Background: Exposure to ambient air particulate matter (PM) has been linked to decline in pulmonary function and cardiovascular events possibly through inflammation. Little is known about individual exposure to ultrafine particles (UFP) inside and outside modern homes and associated health-related effects.

Methods: Associations between vascular and lung function, inflammation markers and exposure in terms of particle number concentration (PNC; d = 10-300 nm) were studied in a cross-sectional design with personal and home indoor monitoring in the Western Copenhagen Area, Denmark.

View Article and Find Full Text PDF

Generation of oxidatively damaged DNA by particulate matter (PM) is hypothesized to occur via production of reactive oxygen species (ROS) and inflammation. We investigated this hypothesis by comparing ROS production, inflammation and oxidatively damaged DNA in different experimental systems investigating air pollution particles. There is substantial evidence indicating that exposure to air pollution particles was associated with elevated levels of oxidatively damaged nucleobases in circulating blood cells and urine from humans, which is supported by observations of elevated levels of genotoxicity in cultured cells exposed to similar PM.

View Article and Find Full Text PDF

The development of products containing carbon nanotubes (CNTs) is a major achievement of nanotechnology, although concerns regarding risk of toxic effects linger if the hazards associated with these materials are not thoroughly investigated. Exposure to CNTs has been associated with depletion of antioxidants, increased intracellular production of reactive oxygen species and pro-inflammatory signaling in cultured cells with primary function in the immune system as well as epithelial, endothelial and stromal cells. Pre-treatment with antioxidants has been shown to attenuate these effects, indicating a dependency of oxidative stress on cellular responses to CNT exposure.

View Article and Find Full Text PDF

Increased levels of oxidatively damaged DNA have been documented in studies of metal, metal oxide, carbon-based and ceramic engineered nanomaterials (ENMs). In particular, 8-oxo-7,8-dihydroguanine-2'-deoxyguanosine (8-oxodG) is widely assessed as a DNA nucleobase oxidation product, measured by chromatographic assays, antibody-based methods or the comet assay with DNA repair enzymes. However, spurious oxidation of DNA has been a problem in certain studies applying chromatographic assays, yielding high baseline levels of 8-oxodG.

View Article and Find Full Text PDF

Alcohol is a risk factor for postmenopausal breast cancer. One of several proposed mechanisms is that alcohol-related breast cancer is caused by increased sex hormone levels. PPARγ inhibits aromatase transcription in breast adipocytes.

View Article and Find Full Text PDF