This paper introduces the reconstructed dataset along with procedures to implement air quality prediction, which consists of air quality, meteorological and traffic data over time, and their monitoring stations and measurement points. Given the fact that those monitoring stations and measurement points are located in different places, it is important to incorporate their time series data into a spatiotemporal dimension. The output can be used as input for various predictive analyses, in particular, we used the reconstructed dataset as input for grid-based (Convolutional Long Short-Term Memory and Bidirectional Convolutional Long Short-Term Memory) and graph-based (Attention Temporal Graph Convolutional Network) machine learning algorithms.
View Article and Find Full Text PDFNitrogen dioxide is one of the pollutants with the most significant health effects. Advanced information on its concentration in the air can help to monitor and control further consequences more effectively, while also making it easier to apply preventive and mitigating measures. Machine learning technologies with available methods and capabilities, combined with the geospatial dimension, can perform predictive analyses with higher accuracy and, as a result, can serve as a supportive tool for productive management.
View Article and Find Full Text PDF