Wheat is a major source of energy and nutrition worldwide, but it is also a primary cause of frequent diet-induced health issues, specifically celiac disease, for which the only effective therapy so far is strict dietary abstinence from gluten-containing grains. Wheat gluten proteins are grouped into two major categories: high-molecular-weight glutenin subunits (HMWgs), vital for mixing and baking properties, and gliadins plus low-molecular-weight glutenin subunits (LMWgs) that contain the overwhelming majority of celiac-causing epitopes. We put forth a hypothesis that eliminating gliadins and LMWgs while retaining HMWgs might allow the development of reduced-immunogenicity wheat genotypes relevant to most gluten-sensitive individuals.
View Article and Find Full Text PDFChloroplasts need to import preproteins and amino acids from the cytosol during their light-induced differentiation. Similarly, chloroplasts have to export organic matter including proteins and amino acids during leaf senescence. Members of the PRAT (preprotein and amino acid transporter) family are candidate transporters for both processes.
View Article and Find Full Text PDFAminoacyl-tRNA synthetases (AaRS) charge tRNAs with amino acids for protein translation. In plants, cytoplasmic, mitochondrial, and chloroplast AaRS exist that are all coded for by nuclear genes and must be imported from the cytosol. In addition, only a few of the mitochondrial tRNAs needed for translation are encoded in mitochondrial DNA.
View Article and Find Full Text PDFThere are specific advantages of using microspores as explants: (1) A small number of explant donors are required to obtain the desired number of pollen embryoids for genetic transformation and (2) microspores constitute a synchronous mass of haploid cells, which are transformable by various means and convertible to doubled haploids therefore allow production of homozygous genotypes in a single generation. Additionally, it has been demonstrated in wheat and other crops that microspores can be easily induced to produce embryoids and biolistic approach to produce a large number of transformants. In view of these listed advantages, we optimized the use of microspore-derived calli for biolistic transformation of wheat.
View Article and Find Full Text PDFWheat gluten proteins are the known cause of celiac disease. The repetitive tracts of proline and glutamine residues in these proteins make them exceptionally resilient to digestion in the gastrointestinal tract. These indigested peptides trigger immune reactions in susceptible individuals, which could be either an allergic reaction or celiac disease.
View Article and Find Full Text PDFThe channeling of metabolites is an essential step of metabolic regulation in all living organisms. Multifunctional enzymes with defined domains for metabolite compartmentalization are rare, but in many cases, larger assemblies forming multimeric protein complexes operate in defined metabolic shunts. In , a multimeric complex was discovered that contains a 13-lipoxygenase and allene oxide synthase (AOS) as well as allene oxide cyclase.
View Article and Find Full Text PDFOxygenated membrane fatty acid derivatives termed oxylipins play important roles in plant defense against biotic and abiotic cues. Plants challenged by insect pests, for example, synthesize a blend of different defense compounds that include volatile aldehydes and jasmonic acid (JA), among others. Because all oxylipins are derived from the same pathway, we investigated how their synthesis might be regulated, focusing on two closely related atypical cytochrome P450 enzymes designated CYP74A and CYP74B, respectively, allene oxide synthase (AOS) and hydroperoxide lyase (HPL).
View Article and Find Full Text PDFUbiquitous nature of prolamin proteins dubbed gluten from wheat and allied cereals imposes a major challenge in the treatment of celiac disease, an autoimmune disorder with no known treatment other than abstinence diet. Administration of hydrolytic glutenases as food supplement is an alternative to deliver the therapeutic agents directly to the small intestine, where sensitization of immune system and downstream reactions take place. The aim of the present research was to evaluate the capacity of wheat grain to express and store hydrolytic enzymes capable of gluten detoxification.
View Article and Find Full Text PDFPlants have evolved an intricate regulatory network of proteases and corresponding protease inhibitors (PI), which operate in various biological pathways and serve diverse spatiotemporal functions during the sedentary life of a plant. Intricacy of the regulatory network can be anticipated from the observation that, depending on the developmental stage and environmental cue(s), either a single PI or multiple PIs regulate the activity of a given protease. On the other hand, the same PI often interacts with different targets at different places, necessitating another level of fine control to be added in planta.
View Article and Find Full Text PDFPhosphite (Phi) is used commercially to manage diseases mainly caused by oomycetes, primarily due to its low cost compared with other fungicides and its persistent control of oomycetous pathogens. We explored the use of Phi in controlling the fungal pathogens Puccinia emaculata and Phakopsora pachyrhizi, the causal agents of switchgrass rust and Asian soybean rust, respectively. Phi primes host defenses and efficiently inhibits the growth of P.
View Article and Find Full Text PDFMicrospores are preferred explant choice for genetic transformation, as their use shortens the duration of obtaining homozygous transformants. All established gene-delivery methods of particle bombardment, electroporation, and cocultivation with Agrobacterium tumefaciens were optimized on androgenic microspores or derived tissues. In the biolistic gene delivery method 35-40 days old haploid microspore embryoids were used for genetic transformation, whereas freshly isolated androgenic microspores were used for genetic transformation in the electroporation and Agrobacterium cocultivation-based methods.
View Article and Find Full Text PDFGrain development is one of the biological processes, which contributes to the final grain yield. To understand the molecular changes taking place during the early grain development, we profiled proteomes of two common wheat cultivars P271 and Chinese Spring (CS) with large and small grains, respectively at three grain developmental stages (4, 8, and 12 days post anthesis). An iTRAQ (isobaric tags for relative and absolute quantitation) based proteomics approach was used for this purpose.
View Article and Find Full Text PDFChloroplasts and mitochondria contain a family of putative preprotein and amino acid transporters designated PRAT. Here, we analyzed the role of two previously characterized PRAT protein family members, encoded by At3g49560 (HP30) and At5g24650 (HP30-2), in planta using a combination of genetic, cell biological and biochemical approaches. Expression studies and green fluorescent protein tagging identified HP30-2 both in chloroplasts and mitochondria, whereas HP30 was located exclusively in chloroplasts.
View Article and Find Full Text PDFNADPH:protochlorophyllide oxidoreductase (POR) is a key enzyme for the light-induced greening of etiolated angiosperm plants. It belongs to the 'RED' family of reductases, epimerases and dehydrogenases. All POR proteins characterized so far contain evolutionarily conserved cysteine residues implicated in protochlorophyllide (Pchlide)-binding and catalysis.
View Article and Find Full Text PDFProteolytic enzymes (proteases) participate in a vast range of physiological processes, ranging from nutrient digestion to blood coagulation, thrombosis, and beyond. In plants, proteases are implicated in host recognition and pathogen infection, induced defense (immunity), and the deterrence of insect pests. Because proteases irreversibly cleave peptide bonds of protein substrates, their activity must be tightly controlled in time and space.
View Article and Find Full Text PDFAs semi-autonomous cell organelles that contain only limited coding information in their own DNA, chloroplasts and mitochondria must import the vast majority of their protein constituents from the cytosol. Respective protein import machineries have been identified that mediate the uptake of chloroplast and mitochondrial proteins and interact with molecular chaperones of the HEAT-SHOCK PROTEIN (HSP) 70 family operating as import motors. Recent work identified unexpected new functions of 2 DnaJ co-chaperones in mitochondrial and chloroplast protein translocation and suggest a common mechanism of reactive oxygen species (ROS) scavenging that shall be discussed here.
View Article and Find Full Text PDFA small family of Kunitz protease inhibitors exists in Arabidopsis thaliana, a member of which (encoded by At1g72290) accomplishes highly specific roles during plant development. Arabidopsis Kunitz-protease inhibitor 1 (Kunitz-PI;1), as we dubbed this protein here, is operative as cysteine PI. Activity measurements revealed that despite the presence of the conserved Kunitz-motif the bacterially expressed Kunitz-PI;1 was unable to inhibit serine proteases such as trypsin and chymotrypsin, but very efficiently inhibited the cysteine protease RESPONSIVE TO DESICCATION 21.
View Article and Find Full Text PDFSeed predators can cause mass ingestion of larger seed populations. As well, herbivorous arthropods attempt to attack etiolated seedlings and chose the apical hook for ingestion, aimed at dropping the cotyledons for later consumption. Etiolated seedlings, as we show here, have established an efficient mechanism of protecting their Achilles' heel against these predators, however.
View Article and Find Full Text PDFLeaf senescence is the terminal stage in the development of perennial plants. Massive physiological changes occur that lead to the shut down of photosynthesis and a cessation of growth. Leaf senescence involves the selective destruction of the chloroplast as the site of photosynthesis.
View Article and Find Full Text PDFWater-soluble chlorophyll proteins (WSCPs) constitute a small family of unusual chlorophyll (Chl)-binding proteins that possess a Kunitz-type protease inhibitor domain. In Arabidopsis thaliana, a WSCP has been identified, named AtWSCP, that forms complexes with Chl and the Chl precursor chlorophyllide (Chlide) in vitro. AtWSCP exhibits a quite unexpected expression pattern for a Chl binding protein and accumulated to high levels in the apical hook of etiolated plants.
View Article and Find Full Text PDFTetrapyrroles such as chlorophyll, heme, and bacteriochlorophyll play fundamental roles in the energy absorption and transduction of all photosynthetic organisms. They are synthesized via a complex pathway taking place in chloroplasts. Chlorophyll biosynthesis in angiosperms involves 16 steps of which only one is light-requiring and driven by the NADPH:protochlorophyllide oxidoreductase (POR).
View Article and Find Full Text PDFAlthough studied extensively since 1958, the molecular mode of action of the Pairing homeologous 1 (Ph1) gene is still unknown. In polyploid wheat, the diploid-like chromosome pairing is principally controlled by the Ph1 gene via preventing homeologous chromosome pairing (HECP). Here, we report a candidate Ph1 gene (C-Ph1) present in the Ph1 locus, transient as well as stable silencing of which resulted in a phenotype characteristic of the Ph1 gene mutants, including HECP, multivalent formation, and disrupted chromosome alignment on the metaphase I (MI) plate.
View Article and Find Full Text PDFTwo closely related genes encoding the jasmonate-induced protein 60 (JIP60) were identified in the barley genome. The gene on chromosome arm 4HL encodes the previously identified protein encoded by the cDNA X66376.1.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2014
Hexaploid bread wheat (Triticum aestivum L., genome BBAADD) is generally more salt tolerant than its tetraploid wheat progenitor (Triticum turgidum L.).
View Article and Find Full Text PDF