Publications by authors named "Disselhorst J"

Background And Objectives: In multiple sclerosis (MS), slowly expanding lesions were shown to be associated with worse disability and prognosis. Their timely detection from cross-sectional data at early disease stages could be clinically relevant to inform treatment planning. Here, we propose to use multiparametric, quantitative MRI to allow a better cross-sectional characterization of lesions with different longitudinal phenotypes.

View Article and Find Full Text PDF

Objectives: Microstructural characterization of patients with multiple sclerosis (MS) has been shown to correlate better with disability compared to conventional radiological biomarkers. Quantitative MRI provides effective means to characterize microstructural brain tissue changes both in lesions and normal-appearing brain tissue. However, the impact of the location of microstructural alterations in terms of neuronal pathways has not been thoroughly explored so far.

View Article and Find Full Text PDF

In oncology, intratumoural heterogeneity is closely linked with the efficacy of therapy, and can be partially characterized via tumour biopsies. Here we show that intratumoural heterogeneity can be characterized spatially via phenotype-specific, multi-view learning classifiers trained with data from dynamic positron emission tomography (PET) and multiparametric magnetic resonance imaging (MRI). Classifiers trained with PET-MRI data from mice with subcutaneous colon cancer quantified phenotypic changes resulting from an apoptosis-inducing targeted therapeutic and provided biologically relevant probability maps of tumour-tissue subtypes.

View Article and Find Full Text PDF

An avalanche photodiode (APD)-based small animal positron emission tomography (PET)-insert was fully evaluated for its PET performance, as well as potential influences on magnetic resonance imaging (MRI) performance. This PET-insert has an extended axial field of view (FOV) compared with the previous design to increase system sensitivity, as well as an updated cooling and temperature regulation to enable stable and reproducible PET acquisitions. The PET performance was evaluated according to the National Electrical Manufacturers Association NU4-2008 protocol.

View Article and Find Full Text PDF

Objective: The aim of this study was to evaluate the effect of a deep learning based computer-aided diagnosis (DL-CAD) system on radiologists' interpretation accuracy and efficiency in reading biparametric prostate magnetic resonance imaging scans.

Materials And Methods: We selected 100 consecutive prostate magnetic resonance imaging cases from a publicly available data set (PROSTATEx Challenge) with and without histopathologically confirmed prostate cancer. Seven board-certified radiologists were tasked to read each case twice in 2 reading blocks (with and without the assistance of a DL-CAD), with a separation between the 2 reading sessions of at least 2 weeks.

View Article and Find Full Text PDF

Identification and localization of ischemic stroke (IS) lesions is routinely performed to confirm diagnosis, assess stroke severity, predict disability and plan rehabilitation strategies using magnetic resonance imaging (MRI). In basic research, stroke lesion segmentation is necessary to study complex peri-infarction tissue changes. Moreover, final stroke volume is a critical outcome evaluated in clinical and preclinical experiments to determine therapy or intervention success.

View Article and Find Full Text PDF

As optoacoustic tomography (OT) emerges as a mainstream pre-clinical imaging modality, understanding the relationship between optoacoustic and other imaging biomarkers in the context of the underlying tissue biology becomes vitally important. Complementary insight into tumour vasculature and hypoxia can be gained using OT alongside magnetic resonance imaging (MRI)-based techniques. To evaluate the relationship between these metrics and the relative performance of the two modalities in assessment of tumour physiology, co-registration of their output imaging data is required.

View Article and Find Full Text PDF

The standardization of preclinical imaging is a key factor to ensure the reliability, reproducibility, validity, and translatability of preclinical data. Preclinical standardization has been slowly progressing in recent years and has mainly been performed within a single institution, whereas little has been done in regards to multicenter standardization between facilities. This study aimed to investigate the comparability among preclinical imaging facilities in terms of PET data acquisition and analysis.

View Article and Find Full Text PDF

Measuring the functional status of tumor vasculature, including blood flow fluctuations and changes in oxygenation, is important in cancer staging and therapy monitoring. Current clinically approved imaging modalities suffer long procedure times and limited spatiotemporal resolution. Optoacoustic tomography (OT) is an emerging clinical imaging modality that may overcome these challenges.

View Article and Find Full Text PDF

Over the last decade, the combination of PET and MRI in one system has proven to be highly successful in basic preclinical research, as well as in clinical research. Nowadays, PET/MRI systems are well established in preclinical imaging and are progressing into clinical applications to provide further insights into specific diseases, therapeutic assessments, and biological pathways. Certain challenges in terms of hardware had to be resolved concurrently with the development of new techniques to be able to reach the full potential of both combined techniques.

View Article and Find Full Text PDF

Phenotypic heterogeneity is commonly observed in diseased tissue, specifically in tumors. Multimodal imaging technologies can reveal tissue heterogeneity noninvasively in vivo, enabling imaging-based profiling of receptors, metabolism, morphology, or function on a macroscopic scale. In contrast, in vitro multiomics, immunohistochemistry, or histology techniques accurately characterize these heterogeneities in the cellular and subcellular scales in a more comprehensive but ex vivo manner.

View Article and Find Full Text PDF

Preclinical imaging benefits from simultaneous acquisition of high-resolution anatomical and molecular data. Additionally, PET/MRI systems can provide functional PET and functional MRI data. To optimize PET sensitivity, we propose a system design that fully integrates the MRI coil into the PET system.

View Article and Find Full Text PDF

In this study, we described and validated an unsupervised segmentation algorithm for the assessment of tumor heterogeneity using dynamic F-FDG PET. The aim of our study was to objectively evaluate the proposed method and make comparisons with compartmental modeling parametric maps and SUV segmentations using simulations of clinically relevant tumor tissue types. An irreversible 2-tissue-compartmental model was implemented to simulate clinical and preclinical F-FDG PET time-activity curves using population-based arterial input functions (80 clinical and 12 preclinical) and the kinetic parameter values of 3 tumor tissue types.

View Article and Find Full Text PDF

Purpose: We aimed to precisely estimate intra-tumoral heterogeneity using spatially regularized spectral clustering (SRSC) on multiparametric MRI data and compare the efficacy of SRSC with the previously reported segmentation techniques in MRI studies.

Procedures: Six NMRI nu/nu mice bearing subcutaneous human glioblastoma U87 MG tumors were scanned using a dedicated small animal 7T magnetic resonance imaging (MRI) scanner. The data consisted of T2 weighted images, apparent diffusion coefficient maps, and pre- and post-contrast T2 and T2* maps.

View Article and Find Full Text PDF

Unlabelled: (18)F-FDG PET is well established in the field of oncology for diagnosis and staging purposes and is increasingly being used to assess therapeutic response and prognosis. Many quantitative indices can be used to characterize tumors on (18)F-FDG PET images, such as SUVmax, metabolically active tumor volume (MATV), total lesion glycolysis, and, more recently, the proposed intratumor uptake heterogeneity features. Although most PET data considered within this context concern the analysis of activity distribution using images obtained from a single static acquisition, parametric images generated from dynamic acquisitions and reflecting radiotracer kinetics may provide additional information.

View Article and Find Full Text PDF

Unlabelled: The aim of our study was to create a novel Gaussian mixture modeling (GMM) pipeline to model the complementary information derived from(18)F-FDG PET and diffusion-weighted MRI (DW-MRI) to separate the tumor microenvironment into relevant tissue compartments and follow the development of these compartments longitudinally.

Methods: Serial (18)F-FDG PET and apparent diffusion coefficient (ADC) maps derived from DW-MR images of NCI-H460 xenograft tumors were coregistered, and a population-based GMM was implemented on the complementary imaging data. The tumor microenvironment was segmented into 3 distinct regions and correlated with histology.

View Article and Find Full Text PDF

Hybrid PET/MR systems have rapidly progressed from the prototype stage to systems that are increasingly being used in the clinics. This review provides an overview of developments in hybrid PET/MR systems and summarizes the current state of the art in PET/MR instrumentation, correction techniques, and data analysis. The strong magnetic field requires considerable changes in the manner by which PET images are acquired and has led, among others, to the development of new PET detectors, such as silicon photomultipliers.

View Article and Find Full Text PDF

Purpose: [(18)F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) images are usually quantitatively analyzed in "whole-tumor" volumes of interest. Also parameters determined with dynamic PET acquisitions, such as the Patlak glucose metabolic rate (MR(glc)) and pharmacokinetic rate constants of two-tissue compartment modeling, are most often derived per lesion. We propose segmentation of tumors to determine tumor heterogeneity, potentially useful for dose-painting in radiotherapy and elucidating mechanisms of FDG uptake.

View Article and Find Full Text PDF

Unlabelled: Several commercial small-animal SPECT scanners using multipinhole collimation are presently available. However, generally accepted standards to characterize the performance of these scanners do not exist. Whereas for small-animal PET, the National Electrical Manufacturers Association (NEMA) NU 4 standards have been defined in 2008, such standards are still lacking for small-animal SPECT.

View Article and Find Full Text PDF

The 275GHz electron-paramagnetic-resonance spectrometer we reported on in 2004 has been equipped with a new probe head, which contains a cavity especially designed for operation in continuous-wave mode. The sensitivity and signal stability that is achieved with this new probe head is illustrated with 275GHz continuous-wave spectra of a 1mM frozen solution of the complex Fe(III)-ethylenediamine tetra-acetic acid and of 10mM frozen solutions of the protein rubredoxin, which contains Fe(3+) in its active site, from three different organisms. The high quality of the spectra of the rubredoxins allows the determination of the zero-field-splitting parameters with an accuracy of 0.

View Article and Find Full Text PDF

Background: Low endothelial shear stress (ESS) elicits endothelial dysfunction. However, the relationship between ESS and arterial remodeling and arterial stiffness is unknown in humans. We developed a 3.

View Article and Find Full Text PDF

(18)F-Fluorodeoxyglucose ((18)F-FDG) is the most common molecular imaging agent in oncology, with a high sensitivity and specificity for detecting several cancers. Antibodies could enhance specificity; therefore, procedures were developed for radiolabeling a small ( approximately 1451 Da) hapten peptide with (68)Ga or (18)F to compare their specificity with (18)F-FDG for detecting tumors using a pretargeting procedure. Mice were implanted with carcinoembryonic antigen (CEA; CEACAM5)-expressing LS174T human colonic tumors and a CEA-negative tumor, or an inflammation was induced in thigh muscle.

View Article and Find Full Text PDF

Unlabelled: The positron emitters (18)F, (68)Ga, (124)I, and (89)Zr are all relevant in small-animal PET. Each of these radionuclides has different positron energies and ranges and a different fraction of single photons emitted. Average positron ranges larger than the intrinsic spatial resolution of the scanner (for (124)I and (68)Ga) will deteriorate the effective spatial resolution and activity recovery coefficient (RC) for small lesions or phantom structures.

View Article and Find Full Text PDF

Unlabelled: The Inveon small-animal PET scanner is characterized by a large, 127-mm axial length and a 161-mm crystal ring diameter. The associated high sensitivity is obtained by using all lines of response (LORs) up to the maximum ring difference (MRD) of 79, for which the most oblique LORs form acceptance angles of 38.3 degrees with transaxial planes.

View Article and Find Full Text PDF