The Keggin-type polyoxometalate [γ-SiWO] was covalently modified to obtain a bis-biotinylated conjugate able to bind avidin. Spectroscopic studies such as UV-vis, fluorimetry, circular dichroism, coupled to surface plasmon resonance technique were used to highlight the unique interplay of supramolecular interactions between the homotetrameric protein and the bis-functionalized polyanion. In particular, the dual recognition mechanism of the avidin encompasses (i) a complementary electrostatic association between the anionic surface of the polyoxotungstate and each positively charged avidin subunit and (ii) specific host-guest interactions between each biotinylated arm and a corresponding pocket on the tetramer subunits.
View Article and Find Full Text PDFThe development and characterization of a novel bioactive polymer based on the immobilization of glucose oxidase enzyme (GOx) in a polyvinyl alcohol (PVA) film showing antibacterial activity is presented. The PVA-GOx composite material was extensively characterized by UV-vis, X-ray Photoelectron (XPS) spectroscopy and by Fourier Transform Infrared (FTIR) spectroscopy to verify the preservation of enzyme structural integrity and activity. The antimicrobial activity of this composite material against Escherichia coli and Vibrio alginolyticus was assessed.
View Article and Find Full Text PDFThe ability of microorganisms to adhere to abiotic surfaces and the potentialities of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy have been exploited to study protonation and heavy metal binding events onto bacterial surfaces. This work represents the first attempt to apply on bacteria the recently developed method known as perfusion-induced ATR-FTIR difference spectroscopy. Such a technique allows measurement of even slight changes in the infrared spectrum of the sample, deposited as a thin layer on an ATR crystal, while an aqueous solution is perfused over its surface.
View Article and Find Full Text PDFAttenuated total reflection Fourier transform infrared (ATR-FTIR) difference spectroscopy has been employed as a powerful method for the comprehension of active layer-analyte interactions, revealing interesting mechanistic aspects concerning the binding of halogen-substituted phenols onto phthalocyanine Langmuir-Schaefer films.
View Article and Find Full Text PDF