Publications by authors named "Diskin G"

Using a new approach that constrains thermodynamic modeling of aerosol composition with measured gas-to-particle partitioning of inorganic nitrate, we estimate the acidity levels for aerosol sampled in the South Korean planetary boundary layer during the NASA/NIER KORUS-AQ field campaign. The pH (mean ± 1σ = 2.43±0.

View Article and Find Full Text PDF

New particle formation in the free troposphere is a major source of cloud condensation nuclei globally. The prevailing view is that in the free troposphere, new particles are formed predominantly in convective cloud outflows. We present another mechanism using global observations.

View Article and Find Full Text PDF

Biomass burning particulate matter (BBPM) affects regional air quality and global climate, with impacts expected to continue to grow over the coming years. We show that studies of North American fires have a systematic altitude dependence in measured BBPM normalized excess mixing ratio (NEMR; ΔPM/ΔCO), with airborne and high-altitude studies showing a factor of 2 higher NEMR than ground-based measurements. We report direct airborne measurements of BBPM volatility that partially explain the difference in the BBPM NEMR observed across platforms.

View Article and Find Full Text PDF

The hydroxyl radical (OH) fuels atmospheric chemical cycling as the main sink for methane and a driver of the formation and loss of many air pollutants, but direct OH observations are sparse. We develop and evaluate an observation-based proxy for short-term, spatial variations in OH (Proxy) in the remote marine troposphere using comprehensive measurements from the NASA Atmospheric Tomography (ATom) airborne campaign. Proxy is a reduced form of the OH steady-state equation representing the dominant OH production and loss pathways in the remote marine troposphere, according to box model simulations of OH constrained with ATom observations.

View Article and Find Full Text PDF

Accurate fire emissions inventories are crucial to predict the impacts of wildland fires on air quality and atmospheric composition. Two traditional approaches are widely used to calculate fire emissions: a satellite-based top-down approach and a fuels-based bottom-up approach. However, these methods often considerably disagree on the amount of particulate mass emitted from fires.

View Article and Find Full Text PDF

Carbonaceous emissions from wildfires are a dynamic mixture of gases and particles that have important impacts on air quality and climate. Emissions that feed atmospheric models are estimated using burned area and fire radiative power (FRP) methods that rely on satellite products. These approaches show wide variability and have large uncertainties, and their accuracy is challenging to evaluate due to limited aircraft and ground measurements.

View Article and Find Full Text PDF

Ozone is the third most important anthropogenic greenhouse gas after carbon dioxide and methane but has a larger uncertainty in its radiative forcing, in part because of uncertainty in the source characteristics of ozone precursors, nitrogen oxides, and volatile organic carbon that directly affect ozone formation chemistry. Tropospheric ozone also negatively affects human and ecosystem health. Biomass burning (BB) and urban emissions are significant but uncertain sources of ozone precursors.

View Article and Find Full Text PDF

Wildfires are a substantial but poorly quantified source of tropospheric ozone (O). Here, to investigate the highly variable O chemistry in wildfire plumes, we exploit the in situ chemical characterization of western wildfires during the FIREX-AQ flight campaign and show that O production can be predicted as a function of experimentally constrained OH exposure, volatile organic compound (VOC) reactivity, and the fate of peroxy radicals. The O chemistry exhibits rapid transition in chemical regimes.

View Article and Find Full Text PDF
Article Synopsis
  • The Gaussian observational model for edge to center heterogeneity (GOMECH) is introduced as a new method for analyzing the horizontal chemical structure of smoke plumes.
  • GOMECH uses data from short-lived emissions and long-lived tracers like CO to quantify plume width and center, validated by studying OH and NO oxidation processes in smoke from the FIREX-AQ study.
  • Findings highlight that nitrous acid (HONO) and phenolic emissions are narrower than CO, indicating more losses at the plume edges, while NO production is concentrated at the plume center, with a significant connection between nitrocatechol aerosol and NO production confirmed by large eddy simulations.
View Article and Find Full Text PDF

Oceans emit large quantities of dimethyl sulfide (DMS) to the marine atmosphere. The oxidation of DMS leads to the formation and growth of cloud condensation nuclei (CCN) with consequent effects on Earth's radiation balance and climate. The quantitative assessment of the impact of DMS emissions on CCN concentrations necessitates a detailed description of the oxidation of DMS in the presence of existing aerosol particles and clouds.

View Article and Find Full Text PDF

The fire influence on regional to global environments and air quality (FIREX-AQ) field campaign was conducted during August 2019 to investigate the impact of wildfire and biomass smoke on air quality and weather in the continental United States. One of the campaign's scientific objectives was to estimate the composition of emissions from wildfires. Ultraspectrally resolved infrared radiance measurements from aircraft and/or satellite observations contain information on tropospheric carbon monoxide (CO) as well as other trace species present in fire emissions.

View Article and Find Full Text PDF

Nitrous oxide (NO) is a long-lived greenhouse gas that also destroys stratospheric ozone. NO emissions are uncertain and characterized by high spatiotemporal variability, making individual observations difficult to upscale, especially in mixed land use source regions like the San Joaquin Valley (SJV) of California. Here, we calculate spatially integrated NO emission rates using nocturnal and convective boundary-layer budgeting methods.

View Article and Find Full Text PDF
Article Synopsis
  • The global oxidation capacity, measured by hydroxyl radicals (OH), affects the lifespan of gases like methane and carbon monoxide, with models generally underestimating their lifetimes due to excessive OH levels.
  • Observations from NASA's ATom campaign provide insights into remote ocean oxidation capacity, showing that the GEOS-Chem model accurately reflects remote OH profiles but struggles with seasonal NO estimates.
  • The study reveals an unexplained enhancement of OH reactivity below 3 km during ATom-1, indicating potential missing reactive VOCs that existing models fail to account for.
View Article and Find Full Text PDF
Article Synopsis
  • Natural aerosols in pristine areas serve as a baseline for evaluating the impact of human-made aerosols on climate, with sea spray aerosol (SSA) being a significant natural component.
  • While wind-driven wave breaking is accepted as the main mechanism for SSA production, its variability at consistent wind speeds remains unclear, especially regarding the influence of sea surface temperature (SST).
  • Research findings indicate that higher SST increases SSA mass generation across various wind speeds, suggesting that including SST in global models can improve the prediction of SSA concentrations and their effects on the atmosphere.
View Article and Find Full Text PDF
Article Synopsis
  • Global coupled chemistry-climate models tend to underestimate carbon monoxide (CO) levels in the Northern Hemisphere, especially peaking in late winter and early spring, which is linked to factors beyond just emissions from human activity and biomass burning.
  • A study using data from the KORUS-AQ experiment revealed that CO was underestimated by 42% in a control scenario, while using satellite data assimilation reduced this bias significantly.
  • Adjusting CO emissions in models not only improved CO accuracy but also positively impacted related compounds such as ozone and hydroxyl (OH), indicating that better accounting for anthropogenic sources enhances overall air quality modeling.
View Article and Find Full Text PDF
Article Synopsis
  • The Korea - United States Air Quality Study (2016) investigated the sources of high ozone and aerosol levels in South Korea through aircraft and ground measurements focused on particulate matter (PM) smaller than 2.5 micrometers.
  • The study analyzed PM data to understand conditions leading to air quality standard violations, especially in the Seoul area, and examined the interaction between meteorological factors and aerosol concentrations.
  • It identified two key meteorological periods influencing PM levels: stagnant clear conditions, which boosted local aerosol production, and cloudy, humid conditions that accelerated aerosol production from both local and transported emissions, suggesting the need for more continuous monitoring to better understand these dynamics.
View Article and Find Full Text PDF

Houston, Texas is a major U.S. urban and industrial area where poor air quality is unevenly distributed and a disproportionate share is located in low-income, non-white, and Hispanic neighborhoods.

View Article and Find Full Text PDF

The hydroxyl radical (OH) fuels tropospheric ozone production and governs the lifetime of methane and many other gases. Existing methods to quantify global OH are limited to annual and global-to-hemispheric averages. Finer resolution is essential for isolating model deficiencies and building process-level understanding.

View Article and Find Full Text PDF

This study evaluates the impact of assimilating soil moisture data from NASA's Soil Moisture Active Passive (SMAP) on short-term regional weather and air quality modeling in East Asia during the Korea-US Air Quality Study (KORUS-AQ) airborne campaign. SMAP data are assimilated into the Noah land surface model using an ensemble Kalman filter approach in the Land Information System framework, which is semi-coupled with the NASA-Unified Weather Research and Forecasting model with online chemistry (NUWRF-Chem). With SMAP assimilation included, water vapor and carbon monoxide (CO) transport from northern-central China transitional climate zones to South Korea is better represented in NUWRF-Chem during two studied pollution events.

View Article and Find Full Text PDF

Modeled source attribution information from the Community Multiscale Air Quality model was coupled with ambient data from the 2011 Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality Baltimore field study. We assess source contributions and evaluate the utility of using aircraft measured CO and NO relationships to constrain emission inventories. We derive ambient and modeled ΔCO:ΔNO ratios that have previously been interpreted to represent CO:NO ratios in emissions from local sources.

View Article and Find Full Text PDF

Dry aerosol size distributions and scattering coefficients were measured on 10 flights in 32 clear-air regions adjacent to tropical storm anvils over the eastern Atlantic Ocean. Aerosol properties in these regions were compared with those from background air in the upper troposphere at least 40 km from clouds. Median values for aerosol scattering coefficient and particle number concentration >0.

View Article and Find Full Text PDF

The vertical distribution of relative humidity with respect to ice (RHI) in the Boreal wintertime Tropical Tropopause Layer (TTL, ≃14-18 km) over the Pacific is examined with the extensive dataset of measurements from the NASA Airborne Tropical TRopopause EXperiment (ATTREX). Multiple deployments of the Global Hawk during ATTREX provided hundreds of vertical profiles spanning the longitudinal extent of the Pacific with accurate measurements of temperature, pressure, water vapor concentration, ozone concentration, and cloud properties. We also compare the measured RHI distributions with results from a transport and microphysical model driven by meteorological analysis fields.

View Article and Find Full Text PDF

In support of future satellite missions that aim to address the current shortcomings in measuring air quality from space, NASA's Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign was designed to enable exploration of relationships between column measurements of trace species relevant to air quality at high spatial and temporal resolution. In the DISCOVER-AQ data set, a modest correlation ( = 0.45) between ozone (O) and formaldehyde (CHO) column densities was observed.

View Article and Find Full Text PDF