Publications by authors named "Disheng Liu"

The coronavirus disease 2019 (COVID-19) has led to a global pandemic of significant severity. In addition to its high level of contagiousness, COVID-19 can have a heterogeneous clinical course, ranging from asymptomatic carriers to severe and potentially life-threatening health complications. Many patients have to revisit the emergency room (ER) within a short time after discharge, which significantly increases the workload for medical staff.

View Article and Find Full Text PDF

To efficiently address the growing electromagnetic pollution problem, it is urgently required to research high-performance electromagnetic materials that can effectively absorb or shield electromagnetic waves. In addition, the stability and durability of electromagnetic materials in complex practical environments is also an issue that needs to be noticed. Therefore, the starting point for our problem-solving is how to endow magnetic/dielectric multi-interfaced composite materials with excellent electromagnetic protection capability and environmental stability.

View Article and Find Full Text PDF

Renal fibrosis is a common outcome of various renal injuries, leading to structural destruction and functional decline of the kidney, and is also a critical prognostic indicator and determinant in renal diseases therapy. Hypoxia is induced in different stress and injuries in kidney, and the hypoxia inducible factors (HIFs) are activated in the context of hypoxia in response and regulation the hypoxia in time. Under stress and hypoxia conditions, HIF-1α increases rapidly and regulates intracellular energy metabolism, cell proliferation, apoptosis, and inflammation.

View Article and Find Full Text PDF

Hypoxia-inducible factor 1-α (HIF-1α) mediates the occurrence and development of renal diseases and fibrosis. In the process, dysregulated cellular metabolism was suggested to be involved in several pathological processes. Here, we found that HIF-1α expression was increased in the early stage of renal fibrosis, and significant metabolic remodeling was triggered.

View Article and Find Full Text PDF

Background: Intestinal ischemia-reperfusion (I/R) injury is a critical pathophysiological process involved in many acute and critical diseases, and it may seriously threaten the lives of patients. Exosomes derived from bone marrow mesenchymal stem cells (BMSC-exos) may be an effective therapeutic approach for I/R injury.

Aims: This study aimed to investigate the role and possible mechanism of BMSC-exos in intestinal I/R injury in vivo and in vitro based on the miR-144-3p and PTEN/Akt/Nrf2 pathways.

View Article and Find Full Text PDF

DNA damage occurs throughout tumorigenesis and development. The immunogenicity of DNA makes it an immune stimulatory molecule that initiates strong inflammatory responses. The cGAS/STING pathway has been investigated as a critical receptor in both exogenous and endogenous DNA sensing to activate the innate immune response.

View Article and Find Full Text PDF

The environmental pollution from microplastics has caused concern from the whole society due to its harm to organisms. However, the effect of microplastics on liver damage and fibrosis remains unclear in the case of long-term accumulation. The present study demonstrated that the 0.

View Article and Find Full Text PDF

Autophagy is being increasingly recognized as an important regulator of intestinal ischemia-reperfusion(I/R)injury, but its exact role is still debated. Emerging evidence suggests that miR-146a-5p is involved in the initiation and development of I/R injury, but its role in intestinal I/R injury remains unclear. The present study generated an intestinal I/R mouse model and an oxygen glucose deprivation/reoxygenation (OGD/R) Caco-2 cell model and found that autophagy was increased and contributed to the intestinal injury and cell death induced by I/R and OGD/R.

View Article and Find Full Text PDF

The intestinal tract plays an essential role in protecting tissues from the invasion of external harmful substances due to impaired barrier function. Furthermore, it participates in immunomodulation by intestinal microorganisms, which is important in health. When the intestinal tract is destroyed, it can lose its protective function, resulting in multiple systemic complications.

View Article and Find Full Text PDF

Cadmium (Cd) is one of the toxic heavy metals which is confirmed to be related to male sterile. Here, confocal Raman spectroscopy was employed to detect biomolecular composition and changes in testis under acute and chronic Cd treatment. Specific Raman shifts associated with mitochondria, nucleic acids, proteins, lipids, and cholesterol were identified which were distinguishing among groups undergoing different Cd treatment times.

View Article and Find Full Text PDF

The aim of this research was to investigate the antioxidant and anti-apoptotic activities of Potentilla anserina polysaccharide (PAP) on kidney damage induced by cadmium (Cd) in vitro and in vivo. PAP has been suggested to have anti-oxidation, anti-apoptosis, immunoregulation, antimicrobial, antitussive, and expectorant abilities. In this study, PAP was extracted and the major components of PAP were analyzed.

View Article and Find Full Text PDF